当前位置: 首页 >> 检索结果
共有 50566 条符合本次的查询结果, 用时 2.4955214 秒

161. NG2 is a target gene of MLL-AF4 and underlies glucocorticoid resistance in MLLr B-ALL by regulating NR3C1 expression.

作者: Belén Lopez-Millan.;Alba Rubio-Gayarre.;Meritxell Vinyoles.;Juan L Trincado.;Mario F Fraga.;Narcís Fernandez-Fuentes.;Mercedes Guerrero-Murillo.;Alba Martinez.;Talia Velasco-Hernandez.;Aïda Falgàs.;Carla Panisello.;Gemma Valcarcel.;José Luis Sardina.;Paula López-Martí.;Biola M Javierre.;Beatriz Del Valle-Pérez.;Antonio García de Herreros.;Franco Locatelli.;Rob Pieters.;Michela Bardini.;Giovanni Cazzaniga.;Juan Carlos Rodríguez-Manzaneque.;Thomas Hanewald.;Rolf Marschalek.;Thomas A Milne.;Ronald W Stam.;Juan Ramón Tejedor.;Pablo Menendez.;Clara Bueno.
来源: Blood. 2024年144卷19期2002-2017页
B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)-mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.

162. A better approach to mismatched HSCT than PTCY?

作者: Erin Morales.;Michael A Pulsipher.
来源: Blood. 2024年144卷5期474-476页

163. Magisetty J, Kondreddy V, Keshava S, et al. Selective inhibition of activated protein C anticoagulant activity protects against hemophilic arthropathy in mice. Blood. 2022;139(18):2830-2841.

来源: Blood. 2024年144卷5期588页

164. A tumor suppressor of CLL: all (T-)bets are on.

作者: Paul Moss.
来源: Blood. 2024年144卷5期467-469页

165. EPCR shedding light on sickle nephropathy.

作者: Erica M Sparkenbaugh.
来源: Blood. 2024年144卷5期472-474页

166. MYC translocation architecture in B-NHL.

作者: Ralf Küppers.
来源: Blood. 2024年144卷5期469-471页

167. A case of Richter transformation to diffuse large B-cell lymphoma with aberrant T-cell marker expression.

作者: Sara Arafat.;Michelle Don.
来源: Blood. 2024年144卷5期586页

168. KSHV/HHV-8-associated multicentric Castleman disease and nodal Kaposi sarcoma displaying a lymphangiectatic pattern.

作者: Fernando Alekos Ocampo-Gonzalez.;Govind Bhagat.
来源: Blood. 2024年144卷5期587页

169. Human herpesvirus 6 and CAR T-cell toxicity.

作者: Karl S Peggs.
来源: Blood. 2024年144卷5期465-466页

170. Plasma cells' fate: it is a complex "orchestra".

作者: Paola Neri.
来源: Blood. 2024年144卷5期466-467页

171. First, do no harm: quality over quantity?

作者: Sara M Tinsley-Vance.;Jeffrey E Lancet.
来源: Blood. 2024年144卷5期471-472页

172. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study.

作者: Othman Al-Sawaf.;Sandra Robrecht.;Can Zhang.;Stefano Olivieri.;Yi Meng Chang.;Anna Maria Fink.;Eugen Tausch.;Christof Schneider.;Matthias Ritgen.;Karl-Anton Kreuzer.;Liliya Sivchev.;Carsten Utoft Niemann.;Anthony Schwarer.;Javier Loscertales.;Robert Weinkove.;Dirk Strumberg.;Allanah Kilfoyle.;Beenish S Manzoor.;Dureshahwar Jawaid.;Nnadozie Emechebe.;Jacob Devine.;Michelle Boyer.;Eva D Runkel.;Barbara Eichhorst.;Stephan Stilgenbauer.;Yanwen Jiang.;Michael Hallek.;Kirsten Fischer.
来源: Blood. 2024年144卷18期1924-1935页
In the CLL14 study, patients with previously untreated chronic lymphocytic leukemia (CLL) and coexisting conditions were randomized to 12 cycles of venetoclax-obinutuzumab (Ven-Obi, n = 216) or chlorambucil-obinutuzumab (Clb-Obi, n = 216). Progression-free survival (PFS) was the primary end point. Key secondary end points included time-to-next-treatment (TTNT), rates of undetectable minimal residual disease (uMRD), overall survival (OS), and rates of adverse events. Patient reported outcomes of time until definitive deterioration (TUDD) in quality of life (QoL) were analyzed. At a median observation time of 76.4 months, PFS remained superior for Ven-Obi compared with Clb-Obi (median, 76.2 vs 36.4 months; hazard ratio [HR], 0.40; 95% confidence interval [CI], 0.31-0.52; P < .0001). Likewise, TTNT was longer after Ven-Obi (6-year TTNT, 65.2% vs 37.1%; HR, 0.44; 95% CI, 0.33-0.58; P < .0001). In the Ven-Obi arm, presence of del(17p), unmutated immunoglobulin heavy-chain variable region, and lymph node size of ≥5 cm were independent prognostic factors for shorter PFS. The 6-year OS rate was 78.7% in the Ven-Obi and 69.2% in the Clb-Obi arm (HR, 0.69; 95% CI, 0.48-1.01; P = .052). A significantly longer TUDD in global health status/QoL was observed in the Ven-Obi than in the Clb-Obi arm (median, 82.1 vs 65.1 months; HR, 0.70; 95% CI, 0.51-0.97). Follow-up-adjusted second primary malignancies incidence rates were 2.3 and 1.4 per 1000 patient-months in the Ven-Obi and Clb-Obi arm, respectively. The sustained long-term survival and QoL benefits support the use of 1-year fixed-duration Ven-Obi in CLL. This trial was registered at www.ClinicalTrials.gov as #NCT02242942.

173. Varied roles for LGR6 in the immune response.

作者: Marie R Siwicki.;Paul Kubes.
来源: Blood. 2024年144卷4期352-354页

174. Dimitriou M, Mortera-Blanco T, Tobiasson M, et al. Identification and surveillance of rare relapse-initiating stem cells during complete remission after transplantation. Blood. 2024;143(11):953-966.

来源: Blood. 2024年144卷4期464页

175. Change is not always good.

作者: Bart L Scott.
来源: Blood. 2024年144卷4期355-357页

176. Hereditary angioedema: beyond swelling.

作者: Paul A Kyrle.;Sabine Eichinger.
来源: Blood. 2024年144卷4期354-355页

177. Diagnosis of mastocytosis: emerging iceberg?

作者: Julien Rossignol.;Michel Arock.
来源: Blood. 2024年144卷4期350-352页

178. Treatment of PTLD: a slow and difficult path.

作者: Sylvain Choquet.
来源: Blood. 2024年144卷4期348-350页

179. Hematopoietic stem cell aging by the niche.

作者: Adam L MacLean.;K Lenhard Rudolph.
来源: Blood. 2024年144卷4期347-348页

180. Pseudo-Chédiak-Higashi inclusions in a low-grade lymphoid neoplasm.

作者: Margaryta Stoieva.;Keenan Hogan.
来源: Blood. 2024年144卷4期462页
共有 50566 条符合本次的查询结果, 用时 2.4955214 秒