141. Essential thrombocythemia: challenges in clinical practice and future prospects.
Essential thrombocythemia (ET) was first described in 1934, and subsequently, progress has been made in better understanding the molecular pathogenesis and which patients may have greatest risk of progression or vascular events. However, it has been more than a decade since a new therapy has been approved for ET. We are beginning to understand more comprehensively both the heterogeneity of this disease, which is largely driven by driver mutation status, as well as the effect of disease-related symptoms, such as fatigue, on patients. In this review we provide a practical overview of diagnosis and management of ET with focus on challenging patient scenarios and some consideration of what comprehensive care might entail. Finally, we also discuss newer therapies and how these might be assessed.
142. Natural killer T cells and other innate-like T lymphocytes as emerging platforms for allogeneic cancer cell therapy.
T cells expressing chimeric antigen receptors (CARs) have achieved major clinical success in patients with hematologic malignancies. However, these treatments remain largely ineffective for solid cancers and require significant time and resources to be manufactured in an autologous setting. Developing alternative immune effector cells as cancer immunotherapy agents that can be employed in allogeneic settings is crucial for the advancement of cell therapy. Unlike T cells, Vα24-invariant natural killer T cells (NKTs) are not alloreactive and can therefore be generated from allogeneic donors for rapid infusion into numerous patients without the risk of graft-versus-host disease. Additionally, NKT cells demonstrate inherent advantages over T-cell products, including the ability to traffic to tumor tissues, target tumor-associated macrophages, transactivate NK cells, and cross-prime tumor-specific CD8 T cells. Both unmodified NKTs, which specifically recognize CD1d-bound glycolipid antigens expressed by certain types of tumors, and CAR-redirected NKTs are being developed as the next generation of allogeneic cell therapy products. In this review, we describe studies on the biology of NKTs and other types of innate-like T cells and summarize the clinical experiences of unmodified and CAR-redirected NKTs, including recent interim reports on allogeneic NKTs.
143. Genetic basis and molecular profiling in myeloproliferative neoplasms.
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
144. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies.
The development of methods to derive induced pluripotent stem cells (iPSCs) has propelled stem cell research, and has the potential to revolutionize many areas of medicine, including cancer immunotherapy. These cells can be propagated limitlessly and can differentiate into nearly any specialized cell type. The ability to perform precise multigene engineering at the iPSC stage, generate master cell lines after clonal selection, and faithfully promote differentiation along natural killer (NK) cells and T-cell lineages is now leading to new opportunities for the administration of off-the-shelf cytotoxic lymphocytes with direct antigen targeting to treat patients with relapsed/refractory cancer. In this review, we highlight the recent progress in iPSC editing and guided differentiation in the development of NK- and T-cell products for immunotherapy. We also discuss some of the potential barriers that remain in unleashing the full potential of iPSC-derived cytotoxic effector cells in the adoptive transfer setting, and how some of these limitations may be overcome through gene editing.
145. Long-term risk of relapse in immune-mediated thrombotic thrombocytopenic purpura and the role of anti-CD20 therapy.
作者: Andrew J Doyle.;Matthew J Stubbs.;Tina Dutt.;Will Lester.;Will Thomas.;Joost van Veen.;Joannes Hermans.;Tanya Cranfield.;Quentin A Hill.;Amanda Clark.;Catherine Bagot.;Steven Austin.;John-Paul Westwood.;Mari Thomas.;Marie Scully.
来源: Blood. 2023年141卷3期285-294页
Disease relapse is recognized as a risk in immune-mediated thrombotic thrombocytopenic purpura (iTTP) after treatment of the acute presenting episode. Identification of patients at risk of relapse and its patterns are yet to be clearly established. We reviewed patients with iTTP having had >3 years of follow-up over 10 years in the United Kingdom to identify patient characteristics for relapse, assess relapse rates and patterns, and response to anti-CD20 therapy in those with a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) relapses (ADAMTS13 activity of <20% without thrombocytopenia). We identified 443 patients demonstrating relapse rates of 40% at 5-year follow-up. At 10-year follow-up, no difference in relapse was observed irrespective of whether rituximab was used at acute presentation (P = .39). Black Caribbean ethnicity increased the risk of disease relapse in the British population. There was a distinct population of patients (6%) that relapsed early with subsequent frequent relapses occurring on average within 2 years (average time to relapse in subgroup, 1.7 years). Overall, nearly 60% of relapses described were ADAMTS13 relapses, with subsequent treatment reducing the risk of progression to clinical relapses. We demonstrate that iTTP diagnosed in the latter part of the study period had lower rates of clinical relapses (22.6% vs 11.1%, P = .0004) with the advent of regular monitoring and preemptive rituximab. In ADAMTS13 relapses, 96% responded to anti-CD20 therapy, achieving ADAMTS13 activity of >20%. Anti-CD20 therapy was demonstrated to be an effective long-term treatment regardless of relapse pattern and there was no loss of this treatment response after subsequent treatment episodes.
146. Single-cell methods in myeloproliferative neoplasms: old questions, new technologies.
Myeloproliferative neoplasms (MPN) are a group of clonal stem cell-derived hematopoietic malignancies driven by aberrant Janus kinase-signal transducer and activator of transcription proteins (JAK/STAT) signaling. Although these are genetically simple diseases, MPNs are phenotypically heterogeneous, reflecting underlying intratumoral heterogeneity driven by the interplay of genetic and nongenetic factors. Their evolution is determined by factors that enable certain cellular subsets to outcompete others. Therefore, techniques that resolve cellular heterogeneity at the single-cell level are ideally placed to provide new insights into MPN biology. With these insights comes the potential to uncover new approaches to predict the clinical course and treat these cancers, ultimately improving outcomes for patients. MPNs present a particularly tractable model of cancer evolution, because most patients present in an early disease phase and only a small proportion progress to aggressive disease. Therefore, it is not surprising that many groundbreaking technological advances in single-cell omics have been pioneered by their application in MPNs. In this review article, we explore how single-cell approaches have provided transformative insights into MPN disease biology, which are broadly applicable across human cancers, and discuss how these studies might be swiftly translated into clinical pathways and may eventually underpin precision medicine.
147. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities.
Treatment paradigms for B-cell non-Hodgkin lymphomas (B-NHL) have shifted dramatically in the last 2 decades following the introduction of highly active immunotherapies such as rituximab. Since then, the field has continued to witness tremendous progress with the introduction of newer, more potent immunotherapeutics, including chimeric antigen receptor T-cell therapy, which have received regulatory approval for and currently play a significant role in the treatment of these diseases. Bispecific antibodies (BsAb) are a novel class of off-the-shelf T-cell redirecting drugs and are among the most promising immunotherapeutics for lymphoma today. BsAb may target various cell-surface antigens and exist in different formats. Anti-CD20xCD3 BsAb have demonstrated remarkable single-agent activity in patients with heavily pretreated B-NHL with a manageable toxicity profile dominated by T-cell overactivation syndromes. Much work remains to be done to define the optimal setting in which to deploy these drugs for B-NHL treatment, their ideal combination partners, strategies to minimize toxicity, and, perhaps most importantly, pharmacodynamic biomarkers of response and resistance. In this review, we provide an update on BsAb development in B-NHL, from discovery to clinical applications, highlighting the achievements, limitations, and future directions of the field.
148. The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia.
Single-cell analysis has emerged over the past decade as a transformative technology informative for the systematic analysis of complex cell populations such as in cancers and the tumor immune microenvironment. The methodologic and analytical advancements in this realm have evolved rapidly, scaling from but a few cells at its outset to the current capabilities of processing and analyzing hundreds of thousands of individual cells at a time. The types of profiling attainable at individual cell resolution now range from genetic and transcriptomic characterization and extend to epigenomic and spatial analysis. Additionally, the increasing ability to achieve multiomic integration of these data layers now yields ever richer insights into diverse molecular disease subtypes and the patterns of cellular circuitry on a per-cancer basis. Over the years, chronic lymphocytic leukemia (CLL) consistently has been at the forefront of genomic investigation, given the ready accessibility of pure leukemia cells and immune cells from circulating blood of patients with this disease. Herein, we review the recent forays into the application of single-cell analysis to CLL, which are already revealing a new understanding of the natural progression of CLL, the impact of novel therapies, and the interactions with coevolving nonmalignant immune cell populations. As we emerge from the end of the beginning of this technologic revolution, CLL stands poised to reap the benefits of single-cell analysis from the standpoints of uncovering fresh fundamental biological knowledge and of providing a path to devising regimens of personalized diagnosis, treatment, and monitoring.
149. The role of iron in chronic inflammatory diseases: from mechanisms to treatment options in anemia of inflammation.
Anemia of inflammation (AI) is a highly prevalent comorbidity in patients affected by chronic inflammatory disorders, such as chronic kidney disease, inflammatory bowel disease, or cancer, that negatively affect disease outcome and quality of life. The pathophysiology of AI is multifactorial, with inflammatory hypoferremia and iron-restricted erythropoiesis playing a major role in the context of disease-specific factors. Here, we review the recent progress in our understanding of the molecular mechanisms contributing to iron dysregulation in AI, the impact of hypoferremia and anemia on the course of the underlying disease, and (novel) therapeutic strategies applied to treat AI.
150. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights.
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
151. Single-cell genomics in AML: extending the frontiers of AML research.
The era of genomic medicine has allowed acute myeloid leukemia (AML) researchers to improve disease characterization, optimize risk-stratification systems, and develop new treatments. Although there has been significant progress, AML remains a lethal cancer because of its remarkably complex and plastic cellular architecture. This degree of heterogeneity continues to pose a major challenge, because it limits the ability to identify and therefore eradicate the cells responsible for leukemogenesis and treatment failure. In recent years, the field of single-cell genomics has led to unprecedented strides in the ability to characterize cellular heterogeneity, and it holds promise for the study of AML. In this review, we highlight advancements in single-cell technologies, outline important shortcomings in our understanding of AML biology and clinical management, and discuss how single-cell genomics can address these shortcomings as well as provide unique opportunities in basic and translational AML research.
152. How I use platelet transfusions.
Platelet transfusions are commonly administered for the prevention or treatment of bleeding in patients with acquired thrombocytopenia across a range of clinical contexts. Recent data, including randomized trials, have highlighted uncertainties in the risk-benefit balance of this therapy, which is the subject of this review. Hemovigilance systems report that platelets are the most frequently implicated component in transfusion reactions. There is considerable variation in platelet count increment after platelet transfusion, and limited evidence of efficacy for clinical outcomes, including prevention of bleeding. Bleeding events commonly occur despite the different policies for platelet transfusion prophylaxis. The underlying mechanisms of harm reported in randomized trials may be related to the role of platelets beyond hemostasis, including mediating inflammation. Research supports the implementation of a restrictive platelet transfusion policy. Research is needed to better understand the impact of platelet donation characteristics on outcomes, and to determine the optimal thresholds for platelet transfusion before invasive procedures or major surgery (eg, laparotomy). Platelet transfusion policies should move toward a risk-adapted approach that does not focus solely on platelet count.
153. Lymph node excisions provide more precise lymphoma diagnoses than core biopsies: a French Lymphopath network survey.
作者: Charlotte Syrykh.;Charlotte Chaouat.;Elsa Poullot.;Nadia Amara.;Virginie Fataccioli.;Marie Parrens.;Alexandra Traverse-Glehen.;Thierry-Jo Molina.;Luc Xerri.;Laurent Martin.;Romain Dubois.;Vanessa Lacheretz-Szablewski.;Marie-Christine Copin.;Anne Moreau.;Marie-Pierre Chenard.;Bastien Cabarrou.;Amélie Lusque.;Philippe Gaulard.;Pierre Brousset.;Camille Laurent.
来源: Blood. 2022年140卷24期2573-2583页
According to expert guidelines, lymph node surgical excision is the standard of care for lymphoma diagnosis. However, core needle biopsy (CNB) has become widely accepted as part of the lymphoma diagnostic workup over the past decades. The aim of this study was to present the largest multicenter inventory of lymph nodes sampled either by CNB or surgical excision in patients with suspected lymphoma and to compare their diagnostic performance in routine pathologic practice. We reviewed 32 285 cases registered in the French Lymphopath network, which provides a systematic expert review of all lymphoma diagnoses in France, and evaluated the percentage of CNB and surgical excision cases accurately diagnosed according to the World Health Organization classification. Although CNB provided a definitive diagnosis in 92.3% and seemed to be a reliable method of investigation for most patients with suspected lymphoma, it remained less conclusive than surgical excision, which provided a definitive diagnosis in 98.1%. Discordance rates between referral and expert diagnoses were higher on CNB (23.1%) than on surgical excision (21.2%; P = .004), and referral pathologists provided more cases with unclassified lymphoma or equivocal lesion through CNB. In such cases, expert review improved the diagnostic workup by classifying ∼90% of cases, with higher efficacy on surgical excision (93.3%) than CNB (81.4%; P < 10-6). Moreover, diagnostic concordance for reactive lesions was higher on surgical excision than CNB (P = .009). Overall, although CNB accurately diagnoses lymphoma in most instances, it increases the risk of erroneous or nondefinitive conclusions. This large-scale survey also emphasizes the need for systematic expert review in cases of lymphoma suspicion, especially in those sampled by using CNB.
154. How I treat immune-mediated thrombotic thrombocytopenic purpura after hospital discharge.
Immune-mediated thrombocytopenic purpura (iTTP) is a thrombotic microangiopathy characterized by an acquired ADAMTS13 deficiency as a result of the presence of an antibody inhibitor of ADAMTS13 leading to the formation of ultralarge von Willebrand multimers. Treatment of iTTP includes plasma exchange, high-dose glucocorticoids, rituximab, and, more recently, caplacizumab, to prevent the development of exacerbations. There is the risk of both relapse and long-term complications that include neurocognitive deficits and cardiovascular events that occur in patients in remission after recovery from an acute iTTP episode. Data on the risk factors for the development of these complications, the appropriate screening, and treatment are limited due to the paucity of research. This article is a review of the current understanding on the risk factors for exacerbation, relapse, and long-term complications of iTTP and discusses an approach to observing patients with iTTP after hospital discharge and during the long-term follow-up in the outpatient setting.
155. The multifaceted role of platelets in mediating brain function.
Platelets, the small, anucleate blood cells that originate from megakaryocytes in the bone marrow, are typically associated with coagulation. However, it is now apparent that platelets are more multifaceted than originally thought, with their function extending beyond their traditional role in hemostasis to acting as important mediators of brain function. In this review, we outline the broad repertoire of platelet function in the central nervous system, focusing on the similarities between platelets and neurons. We also summarize the role that platelets play in the pathophysiology of various neurological diseases, with a particular focus on neuroinflammation and neurodegeneration. Finally, we highlight the exciting prospect of harnessing the unique features of the platelet proteome and extracellular vesicles, which are rich in neurotrophic, antioxidative, and antiinflammatory factors, for the development of novel neuroprotective and neuroregenerative interventions to treat various neurodegenerative and traumatic pathologies.
156. ROR1: an orphan becomes apparent.
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
157. How I approach smoldering multiple myeloma.
The current standard of care in smoldering multiple myeloma (SMM) is close surveillance, outside of clinical trials. Efforts are being made to understand the pathobiologic process that leads to the progression of SMM to active MM. This review provides a critical description of available data, including risk factors and risk models of progression, as well as clinical trials investigating interventions for this patient population. We describe 2 cases in which patients were seen before the concept of a myeloma-defining event was established. Today, based on the International Myeloma Working Group criteria, both patients would have been identified as experiencing myeloma-defining events, and therapy would have been initiated. These cases show that occasionally, patients can undergo observation only, even when they exceed criteria for high-risk SMM.
158. MRD in multiple myeloma: does CR really matter?
Multiple myeloma embodies the paradigm of the deeper the response, the longer the survival. However, results are conflicting regarding achievement of complete remission (CR) and minimal residual disease (MRD) negativity; some patients with persistent M protein have undetectable MRD. We reviewed the frequency of this discordance and outcomes of these patients. We spotlight possible explanations for and consequences of conflicting response criteria and suggest that MRD be assessed in patients achieving very good partial response or better in clinical trials.
159. Daratumumab in AL amyloidosis.
Light-chain amyloidosis has come far, with the first treatment getting regulatory approval in 2021. Daratumumab-based regimens achieve deep hematologic and organ responses, offering a new therapeutic backbone. Early identification, correct fibril typing, challenges of the very advanced patient, and lack of therapies to remove amyloid deposits remain under study, but are, as yet, elusive. We review the progress of treatment in AL amyloidosis, the impact of daratumumab, and the next steps after treatment.
160. Approval of brexucabtagene autoleucel for adults with relapsed and refractory acute lymphocytic leukemia.
In October 2021, brexucabtagene autoleucel became the first anti-CD19 chimeric antigen receptor T-cell product to receive approval from the Food and Drug Administration to treat adults with relapsed and refractory B-cell acute lymphoblastic leukemia. The approval is based on results from the Zuma-3 trial and significantly widens treatment options for this patient population. In this article, we review outcomes from this study and its implications.
|