101. Acute Kidney Injury: A Bona Fide Complication of Diabetes.
The landscape of kidney disease in diabetes has shifted. The classical dogma of "diabetic nephropathy" progressing through stages of albuminuria, leading to decline in glomerular filtration rate and end-stage kidney disease (ESKD), has been replaced by a more nuanced understanding of the complex and heterogeneous nature of kidney disease in diabetes. Paralleling this evolution, standardized definitions have resulted in a growing appreciation that acute kidney injury (AKI) is increasing in its incidence rapidly and that people with diabetes are much more likely to develop AKI than people without diabetes. Here, I propose that AKI should be considered a complication of diabetes alongside other complications that similarly do not fit neatly into the historical microvascular/macrovascular paradigm. In this article, we take a look at the evidence indicating that diabetes is a major risk factor for AKI and we review the causes of this increased risk. We consider the long-term implications of AKI in diabetes and its potential contribution to the future development of chronic kidney disease, ESKD, and mortality. Finally, we look toward the future at strategies to better identify people at risk for AKI and to develop new approaches to improve AKI outcomes. Recognizing AKI as a bona fide complication of diabetes should open up new avenues for investigation that may ultimately improve the outlook for people living with diabetes and at risk for kidney disease.
102. COVID-19 and Diabetes: A Collision and Collusion of Two Diseases.
作者: Eva L Feldman.;Masha G Savelieff.;Salim S Hayek.;Subramaniam Pennathur.;Matthias Kretzler.;Rodica Pop-Busui.
来源: Diabetes. 2020年69卷12期2549-2565页
The coronavirus disease 2019 (COVID-19) pandemic has infected >22.7 million and led to the deaths of 795,000 people worldwide. Patients with diabetes are highly susceptible to COVID-19-induced adverse outcomes and complications. The COVID-19 pandemic is superimposing on the preexisting diabetes pandemic to create large and significantly vulnerable populations of patients with COVID-19 and diabetes. This article provides an overview of the clinical evidence on the poorer clinical outcomes of COVID-19 infection in patients with diabetes versus patients without diabetes, including in specific patient populations, such as children, pregnant women, and racial and ethnic minorities. It also draws parallels between COVID-19 and diabetes pathology and suggests that preexisting complications or pathologies in patients with diabetes might aggravate infection course. Finally, this article outlines the prospects for long-term sequelae after COVID-19 for vulnerable populations of patients with diabetes.
103. The Heating Microenvironment: Intercellular Cross Talk Within Thermogenic Adipose Tissue.
Adipose tissue serves as the body's primary energy storage site; however, findings in recent decades have transformed our understanding of the multifaceted roles of this adaptable organ. The ability of adipose tissue to undergo energy expenditure through heat generation is termed adaptive thermogenesis, a process carried out by thermogenic adipocytes. Adipocytes are the primary parenchymal cell type in adipose tissue, yet these cells are sustained within a rich stromal vascular microenvironment comprised of adipose stem cells and progenitors, immune cells, neuronal cells, fibroblasts, and endothelial cells. Intricate cross talk between these diverse cell types is essential in regulating the activation of thermogenic fat, and the past decade has shed significant light on how this intercellular communication functions. This review will draw upon recent findings and current perspectives on the sophisticated repertoire of cellular and molecular features that comprise the adipose thermogenic milieu.
104. Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity.
Accumulation of lipid in skeletal muscle is thought to be related to the development of insulin resistance and type 2 diabetes. Initial work in this area focused on accumulation of intramuscular triglyceride; however, bioactive lipids such as diacylglycerols and sphingolipids are now thought to play an important role. Specific species of these lipids appear to be more negative toward insulin sensitivity than others. Adding another layer of complexity, localization of lipids within the cell appears to influence the relationship between these lipids and insulin sensitivity. This article summarizes how accumulation of total lipids, specific lipid species, and localization of lipids influence insulin sensitivity in humans. We then focus on how these aspects of muscle lipids are impacted by acute and chronic aerobic and resistance exercise training. By understanding how exercise alters specific species and localization of lipids, it may be possible to uncover specific lipids that most heavily impact insulin sensitivity.
105. The Peripheral Peril: Injected Insulin Induces Insulin Insensitivity in Type 1 Diabetes.
Insulin resistance is an underappreciated facet of type 1 diabetes that occurs with remarkable consistency and considerable magnitude. Although therapeutic innovations are continuing to normalize dysglycemia, a sizable body of data suggests a second metabolic abnormality-iatrogenic hyperinsulinemia-principally drives insulin resistance and its consequences in this population and has not been addressed. We review this evidence to show that injecting insulin into the peripheral circulation bypasses first-pass hepatic insulin clearance, which leads to the unintended metabolic consequence of whole-body insulin resistance. We propose restructuring insulin therapy to restore the physiological insulin balance between the hepatic portal and peripheral circulations and thereby avoid the complications of life-long insulin resistance. As technology rapidly advances and our ability to ensure euglycemia improves, iatrogenic insulin resistance will become the final barrier to overcome to restore normal physiology, health, and life in type 1 diabetes.
106. "Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets.
The coordinated electrical activity of β-cells within the pancreatic islet drives oscillatory insulin secretion. A recent hypothesis postulates that specially equipped "hub" or "leader" cells within the β-cell network drive islet oscillations and that electrically silencing or optically ablating these cells suppresses coordinated electrical activity (and thus insulin secretion) in the rest of the islet. In this Perspective, we discuss this hypothesis in relation to established principles of electrophysiological theory. We conclude that whereas electrical coupling between β-cells is sufficient for the propagation of excitation across the islet, there is no obvious electrophysiological mechanism that explains how hyperpolarizing a hub cell results in widespread inhibition of islet electrical activity and disruption of their coordination. Thus, intraislet diffusible factors should perhaps be considered as an alternate mechanism.
107. Energy Regulation Mechanism and Therapeutic Potential of Asprosin.
Genetic studies of patients with neonatal progeroid syndrome led to the discovery of the novel fasting-induced, glucogenic, and orexigenic hormone named asprosin, the C-terminal cleavage product of profibrillin. Upon secretion, asprosin travels to the liver, where it exerts a glucogenic effect through OR4M1, an olfactory G-protein-coupled receptor. It also crosses the blood-brain barrier to stimulate appetite-modulating neurons in the arcuate nucleus of the hypothalamus, exerting an orexigenic effect via an as yet unidentified receptor. Specifically, it stimulates appetite by activating orexigenic AgRP neurons and inhibiting anorexigenic POMC neurons. Studies have also focused on the therapeutic potential of inhibiting asprosin for treatment of obesity and type 2 diabetes, both of which are characterized by high levels of circulating asprosin. It has been shown that anti-asprosin monoclonal antibodies reduce blood glucose, appetite, and body weight, validating asprosin as a therapeutic target. Current work aims to uncover key features of the asprosin biology such as the identification of its neuronal receptor, identification of the secretion mechanism from adipose tissue, and development of anti-asprosin monoclonal antibodies as diabetes and obesity therapies.
108. Epigenetic Regulation of Hepatic Lipogenesis: Role in Hepatosteatosis and Diabetes.
Hepatosteatosis, which is frequently associated with development of metabolic syndrome and insulin resistance, manifests when triglyceride (TG) input in the liver is greater than TG output, resulting in the excess accumulation of TG. Dysregulation of lipogenesis therefore has the potential to increase lipid accumulation in the liver, leading to insulin resistance and type 2 diabetes. Recently, efforts have been made to examine the epigenetic regulation of metabolism by histone-modifying enzymes that alter chromatin accessibility for activation or repression of transcription. For regulation of lipogenic gene transcription, various known lipogenic transcription factors, such as USF1, ChREBP, and LXR, interact with and recruit specific histone modifiers, directing specificity toward lipogenesis. Alteration or impairment of the functions of these histone modifiers can lead to dysregulation of lipogenesis and thus hepatosteatosis leading to insulin resistance and type 2 diabetes.
109. Exercise Combats Hepatic Steatosis: Potential Mechanisms and Clinical Implications.
Hepatic steatosis, the excess storage of intrahepatic lipids, is a rampant clinical problem associated with the obesity epidemic. Hepatic steatosis is linked to increased risk for insulin resistance, type 2 diabetes, and cardiovascular and advanced liver disease. Accumulating evidence shows that physical activity, exercise, and aerobic capacity have profound effects on regulating intrahepatic lipids and mediating susceptibility for hepatic steatosis. Moreover, exercise can effectively reduce hepatic steatosis independent of changes in body mass. In this perspective, we highlight 1) the relationship between obesity and metabolic pathways putatively driving hepatic steatosis compared with changes induced by exercise; 2) the impact of physical activity, exercise, and aerobic capacity compared with caloric restriction on regulating intrahepatic lipids and steatosis risk; 3) the effects of exercise training (modalities, volume, intensity) for treatment of hepatic steatosis, and 4) evidence for a sustained protection against steatosis induced by exercise. Overall, evidence clearly indicates that exercise powerfully regulates intrahepatic storage of fat and risk for steatosis.
110. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease.
作者: Alan Chait.;Henry N Ginsberg.;Tomas Vaisar.;Jay W Heinecke.;Ira J Goldberg.;Karin E Bornfeldt.
来源: Diabetes. 2020年69卷4期508-516页
Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders.
111. Stress-Induced Translational Regulation Mediated by RNA Binding Proteins: Key Links to β-Cell Failure in Diabetes.
In type 2 diabetes, β-cells endure various forms of cellular stress, including oxidative stress and endoplasmic reticulum stress, secondary to increased demand for insulin production and extracellular perturbations, including hyperglycemia. Chronic exposure to stress causes impaired insulin secretion, apoptosis, and loss of cell identity, and a combination of these processes leads to β-cell failure and severe hyperglycemia. Therefore, a better understanding of the molecular mechanisms underlying stress responses in β-cells promises to reveal new therapeutic opportunities for type 2 diabetes. In this perspective, we discuss posttranscriptional control of gene expression as a critical, but underappreciated, layer of regulation with broad importance during stress responses. Specifically, regulation of mRNA translation occurs pervasively during stress to activate gene expression programs; however, the convenience of RNA sequencing has caused translational regulation to be overlooked compared with transcriptional controls. We highlight the role of RNA binding proteins in shaping selective translational regulation during stress and the mechanisms underlying this level of regulation. A growing body of evidence indicates that RNA binding proteins control an array of processes in β-cells, including the synthesis and secretion of insulin. Therefore, systematic evaluations of translational regulation and the upstream factors shaping this level of regulation are critical areas of investigation to expand our understanding of β-cell failure in type 2 diabetes.
112. Understanding Metabolic Memory: A Tale of Two Studies.
The results of the Diabetes Control and Complications Trial (DCCT) have given rise to much encouragement in the battle to stave off the complications of type 1 diabetes, showing dramatic declines in the development of severe retinopathy, nephropathy, and neuropathy in those treated intensively compared with conventional therapy. Particularly encouraging has been the continuing difference between the two groups despite both having similar HbA1c (∼8%) since the end of DCCT, when 96% of participants entered the observational Epidemiology of Diabetes Interventions and Complications (EDIC) study. This continuing relative benefit has been termed "metabolic memory," which implies altered metabolic regulation. Based on evidence from both the Epidemiology of Diabetes Complications (EDC) prospective cohort study of childhood-onset type 1 diabetes and DCCT/EDIC, we show that the metabolic memory effect can be largely explained by lower cumulative glycemic exposure in the intensive therapy group, and, on average, the development of complications increases with greater glycemic exposure, irrespective of whether this results from a high exposure for a short time or a lower exposure for a longer time. Thus, there is no need for a concept like "metabolic memory" to explain these observations. Potential mechanisms explaining the cumulative glycemic effect are also briefly discussed.
113. The Local Paracrine Actions of the Pancreatic α-Cell.
作者: Rayner Rodriguez-Diaz.;Alejandro Tamayo.;Manami Hara.;Alejandro Caicedo.
来源: Diabetes. 2020年69卷4期550-558页
Secretion of glucagon from the pancreatic α-cells is conventionally seen as the first and most important defense against hypoglycemia. Recent findings, however, show that α-cell signals stimulate insulin secretion from the neighboring β-cell. This article focuses on these seemingly counterintuitive local actions of α-cells and describes how they impact islet biology and glucose metabolism. It is mostly based on studies published in the last decade on the physiology of α-cells in human islets and incorporates results from rodents where appropriate. As this and the accompanying articles show, the emerging picture of α-cell function is one of increased complexity that needs to be considered when developing new therapies aimed at promoting islet function in the context of diabetes.
114. Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes.
作者: Jennifer K Ferris.;J Timothy Inglis.;Kenneth M Madden.;Lara A Boyd.
来源: Diabetes. 2020年69卷1期3-11页
Diabetes is associated with a loss of somatosensory and motor function, leading to impairments in gait, balance, and manual dexterity. Data-driven neuroimaging studies frequently report a negative impact of diabetes on sensorimotor regions in the brain; however, relationships with sensorimotor behavior are rarely considered. The goal of this review is to consider existing diabetes neuroimaging evidence through the lens of sensorimotor neuroscience. We review evidence for diabetes-related disruptions to three critical circuits for movement control: the cerebral cortex, the cerebellum, and the basal ganglia. In addition, we discuss how central nervous system (CNS) degeneration might interact with the loss of sensory feedback from the limbs due to peripheral neuropathy to result in motor impairments in individuals with diabetes. We argue that our understanding of movement impairments in individuals with diabetes is incomplete without the consideration of disease complications in both the central and peripheral nervous systems. Neuroimaging evidence for disrupted central sensorimotor circuitry suggests that there may be unrecognized behavioral impairments in individuals with diabetes. Applying knowledge from the existing literature on CNS contributions to motor control and motor learning in healthy individuals provides a framework for hypothesis generation for future research on this topic.
115. A Primary Role for α-Cells as Amino Acid Sensors.
Glucagon and its partner insulin are dually linked in both their secretion from islet cells and their action in the liver. Glucagon signaling increases hepatic glucose output, and hyperglucagonemia is partly responsible for the hyperglycemia in diabetes, making glucagon an attractive target for therapeutic intervention. Interrupting glucagon signaling lowers blood glucose but also results in hyperglucagonemia and α-cell hyperplasia. Investigation of the mechanism for α-cell proliferation led to the description of a conserved liver-α-cell axis where glucagon is a critical regulator of amino acid homeostasis. In return, amino acids regulate α-cell function and proliferation. New evidence suggests that dysfunction of the axis in humans may result in the hyperglucagonemia observed in diabetes. This discussion outlines important but often overlooked roles for glucagon that extend beyond glycemia and supports a new role for α-cells as amino acid sensors.
116. Repositioning Glucagon Action in the Physiology and Pharmacology of Diabetes.
Glucagon is historically described as the counterregulatory hormone to insulin, induced by fasting/hypoglycemia to raise blood glucose through action mediated in the liver. However, it is becoming clear that the biology of glucagon is much more complex and extends beyond hepatic actions to exert control on glucose metabolism. We discuss the inconsistencies with the canonical view that glucagon is primarily a hyperglycemic agent driven by fasting/hypoglycemia and highlight the recent advances that have reshaped the metabolic role of glucagon. These concepts are placed within the context of both normal physiology and the pathophysiology of disease and then extended to discuss emerging strategies that incorporate glucagon agonism in the pharmacology of treating diabetes.
117. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP).
作者: Klaus H Kaestner.;Alvin C Powers.;Ali Naji.; .;Mark A Atkinson.
来源: Diabetes. 2019年68卷7期1394-1402页
Type 1 diabetes risk can reliably be predicted by markers of autoimmunity, but approaches to prevent or modify the underlying disease process are needed. We posit this void fundamentally results from a limited understanding of immune-islet cell interactions within the pancreas and relevant immune organs, contributions of β-cells to their own demise, and epigenetic predispositions affecting both immune and islet cells. Because biopsy of the human pancreas and pancreatic lymph nodes carries risk and the pancreas begins to autodigest soon after death, detailed cellular and molecular phenotyping of the human type 1 diabetes pancreas is lacking, limiting our understanding of the mechanisms of β-cell loss. To address these challenges, the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases established the Human Pancreas Analysis Program (HPAP) to procure human type 1 diabetes pancreata for an extensive array of tissue-based, cellular, and epigenetic assays aimed at critical knowledge gaps in our understanding of the local immune attack and loss of β-cells. In this Methodology Review, we describe how HPAP is performing detailed islet and immune cell phenotyping and creating publicly available data sets with the goals of an improved understanding of type 1 diabetes and the development of more effective treatments to prevent or reverse the disease.
118. β-Cell Fate in Human Insulin Resistance and Type 2 Diabetes: A Perspective on Islet Plasticity.
作者: Teresa Mezza.;Francesca Cinti.;Chiara Maria Assunta Cefalo.;Alfredo Pontecorvi.;Rohit N Kulkarni.;Andrea Giaccari.
来源: Diabetes. 2019年68卷6期1121-1129页
Although it is well established that type 2 diabetes (T2D) is generally due to the progressive loss of β-cell insulin secretion against a background of insulin resistance, the actual correlation of reduced β-cell mass to its defective function continues to be debated. There is evidence that a compensatory increase in β-cell mass, and the consequent insulin secretion, can effectively cope with states of insulin resistance, until hyperglycemia supervenes. Recent data strongly indicate that the mechanisms by which islets are able to compensate in response to insulin resistance in peripheral tissues is secondary to hyperplasia, as well as the activation of multiple cellular machineries with diverse functions. Importantly, islet cells exhibit plasticity in altering their endocrine commitment; for example, by switching from secretion of glucagon to secretion of insulin and back (transdifferentiation) or from an active secretory state to a nonsecretory quiescent state (dedifferentiation) and back. Lineage tracing (a method used to track each cell though its differentiation process) has demonstrated these potentials in murine models. A limitation to drawing conclusions from human islet research is that most studies are derived from human autopsy and/or organ donor samples, which lack in vivo functional and metabolic profiling. In this review, we specifically focus on evidence of islet plasticity in humans-from the normal state, progressing to insulin resistance to overt T2D-to explain the seemingly contradictory results from different cross-sectional studies in the literature. We hope the discussion on this intriguing scenario will provide a forum for the scientific community to better understand the disease and in the long term pave the way for personalized therapies.
119. Sodium-Glucose Cotransporter 2 Inhibitors: A Case Study in Translational Research.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the most recently approved class of diabetes drugs. Unlike other agents, SGLT2 inhibitors act on the kidney to promote urinary glucose excretion. SGLT2 inhibitors provide multiple benefits, including decreased HbA1c, body weight, and blood pressure. These drugs have received special attention because they decrease the risk of major adverse cardiovascular events and slow progression of diabetic kidney disease (1-3). Balanced against these impressive benefits, the U.S. Food and Drug Administration-approved prescribing information describes a long list of side effects: genitourinary infections, ketoacidosis, bone fractures, amputations, acute kidney injury, perineal necrotizing fasciitis, and hyperkalemia. This review provides a physiological perspective to understanding the multiple actions of these drugs complemented by a clinical perspective toward balancing benefits and risks.
120. Function and Mechanism of Long Noncoding RNAs in Adipocyte Biology.
The last two decades have witnessed an explosion of interest in adipocyte biology, coinciding with the upsurge of obesity and metabolic syndrome. Now we have new perspectives on the distinct developmental origins of white, brown, and beige adipocytes and their role in metabolic physiology and disease. Beyond fuel metabolism, adipocytes communicate with the immune system and other tissues by releasing diverse paracrine and endocrine factors to orchestrate adipose tissue remodeling and maintain systemic homeostasis. Significant progress has been made in delineating the regulatory networks that govern different aspects of adipocyte biology. Here we provide an overview on the emerging role of long noncoding RNAs (lncRNAs) in the regulation of adipocyte development and metabolism and discuss the implications of the RNA-protein regulatory interface in metabolic control.
|