当前位置: 首页 >> 检索结果
共有 4581 条符合本次的查询结果, 用时 2.1930086 秒

4481. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans.

作者: Juris J Meier.;Johannes D Veldhuis.;Peter C Butler.
来源: Diabetes. 2005年54卷6期1649-56页
In health, insulin is secreted in discrete pulses into the portal vein, and the regulation of the rate of insulin secretion is accomplished by modulation of insulin pulse mass. Several lines of evidence suggest that the pattern of insulin delivery by the pancreas determines hepatic insulin clearance. In previous large animal studies, the amplitude of insulin pulses was related to the extent of insulin clearance. In humans (and in large animals), the amplitude of insulin oscillations is approximately 100-fold higher in the portal vein than in the systemic circulation, despite only a fivefold dilution, implying preferential hepatic extraction of insulin pulses. In the present study, by direct hepatic vein sampling in healthy humans, we sought to establish the extent of first-pass hepatic insulin extraction and to determine whether the pattern of insulin secretion (insulin pulse mass and amplitude) dictates the hepatic insulin clearance and thereby delivery of insulin to extrahepatic insulin-responsive tissues. Five nondiabetic subjects (two men and three women, mean age 32 years [range 25-39], BMI 24.9 kg/m(2) [21.2-27.1]) participated. Insulin and C-peptide delivery from the splanchnic bed was measured in basal overnight-fasted state and during a glucose infusion of 2 mg . kg(-1) . min(-1) by simultaneous sampling from the hepatic vein and an arterialized vein along with direct estimation of splanchnic blood flow. Fractional insulin extraction was calculated from the difference between the C-peptide and insulin delivery rates from the liver. The time patterns of insulin concentrations and hepatic insulin clearance were analyzed by deconvolution and Cluster analysis, respectively. Cross-correlation analysis was used to relate C-peptide secretion and insulin clearance. Glucose infusion increased peripheral glucose concentrations from 5.4 +/- 0.1 to 6.4 +/- 0.4 mmol/l (P < 0.05). Likewise, insulin and C-peptide concentrations increased during glucose infusion (P < 0.05). Hepatic insulin clearance increased with glucose infusion (1.06 +/- 0.18 vs. 2.55 +/- 0.38 pmol . kg(-1) . min(-1); P < 0.01), but fractional hepatic insulin clearance was stable (78.2 +/- 4.4 vs. 84 0. +/- 3.9%, respectively; P = 0.18). Insulin secretory-burst mass rose during glucose infusion (P < 0.05), whereas the interburst interval remained unchanged (4.4 +/- 0.2 vs. 4.5 +/- 0.3 min; P = 0.36). Cluster analysis identified an oscillatory pattern in insulin clearance, with peaks occurring approximately every 5 min. Cross-correlation analysis between prehepatic C-peptide secretion and hepatic insulin clearance demonstrated a significant positive association without detectable (<1 min) time lag. Insulin secretory-burst mass strongly predicted insulin clearance (r = 0.81, P = 0.0043). In conclusion, in humans, approximately 80% of insulin is extracted during the first liver passage. The liver rapidly responds to fluctuations in insulin secretion, preferentially extracting insulin delivered in pulses. The mass (and therefore amplitude) of insulin pulses traversing the liver is the predominant determinant of hepatic insulin clearance. Therefore, through this means, the pulse mass of insulin release dictates both hepatic (directly) as well as extra-hepatic (indirectly) insulin delivery. These findings emphasize the dual role of the liver and pancreas and their relationship mediated through magnitude of insulin pulse mass in regulating the quantity and pattern of systemic insulin delivery.

4482. Variations in peptide YY and Y2 receptor genes are associated with severe obesity in Pima Indian men.

作者: Lijun Ma.;P Antonio Tataranni.;Robert L Hanson.;Aniello M Infante.;Sayuko Kobes.;Clifton Bogardus.;Leslie J Baier.
来源: Diabetes. 2005年54卷5期1598-602页
Peptide YY (PYY) and Y2 receptor (Y2R) may be important in the central regulation of body weight and food intake. To determine whether genetic variation in PYY and/or Y2R may contribute to morbid obesity in humans, these genes were sequenced in 83 extremely obese Pima Indians (BMI > or = 50 kg/m2). Sequencing of PYY identified three single nucleotide polymorphisms (SNPs) in the untranslated region. Sequencing of the Y2R coding region identified one missense (Ala172Thr) substitution and two silent substitutions. Eight additional SNPs in the 5' untranslated region of Y2R were identified from public databases. These SNPs were genotyped in 489 full-heritage adult Pimas (362 severely obese and 127 nondiabetic, nonobese subjects), who are not first-degree relatives, for association analysis. The PYY variants were not associated with obesity, whereas four variants from two haplotype blocks in Y2R were marginally associated (P = 0.054-0.067) with obesity. However, if the analysis was restricted to men (n = 167, 100 obese and 67 lean), the PYY variants and two SNPs in Y2R that were in complete linkage disequilibrium were significantly associated with severe obesity (P = 0.001 and P = 0.002, respectively). Our data suggest that the PYY-Y2R pathway may influence body weight through a sex-specific mechanism, but this finding requires confirmation in other populations.

4483. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance.

作者: Steven Haffner.;Marinella Temprosa.;Jill Crandall.;Sarah Fowler.;Ronald Goldberg.;Edward Horton.;Santica Marcovina.;Kieren Mather.;Trevor Orchard.;Robert Ratner.;Elizabeth Barrett-Connor.; .
来源: Diabetes. 2005年54卷5期1566-72页
Increases in subclinical inflammation (C-reactive protein [CRP]) and impaired coagulation have been associated with increased obesity and insulin resistance. Only a few small studies have examined the effect of lifestyle changes, such as weight loss, increased physical activity, and insulin-sensitizing intervention on inflammation and coagulation. The Diabetes Prevention Program (DPP) clinical trial studied the effect of an intensive lifestyle intervention or metformin on progression to diabetes relative to placebo in 3,234 adults with impaired glucose tolerance. The effects of these interventions on CRP and fibrinogen at 12 months are examined in this report. Metformin reduced CRP in women compared with the placebo group. In men, the median changes in CRP from baseline to 1 year were -33% in the lifestyle group, -7% in the metformin group, and +5% in the placebo group. In women, the changes in CRP from baseline to follow-up were -29% in the lifestyle group, -14% in the metformin group, and 0% in the placebo group. In the lifestyle group weight loss rather than increased physical activity seems to account for most of the changes in CRP. Only modest reductions (although significant) were seen in fibrinogen levels in the lifestyle group relative to the metformin and placebo group. Lifestyle intervention reduced levels of nontraditional cardiovascular risk factors relative to both placebo and to a lesser degree to metformin.

4484. Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC Genetics Study.

作者: Andrew P Boright.;Andrew D Paterson.;Lucia Mirea.;Shelley B Bull.;Alireza Mowjoodi.;Stephen W Scherer.;Bernard Zinman.; .
来源: Diabetes. 2005年54卷4期1238-44页
The development and progression of microvascular complications have been extensively documented in a cohort of type 1 diabetic subjects enrolled in the Diabetes Control and Complications Trial (DCCT) and followed in the Epidemiology of Diabetes Interventions and Complications (EDIC) study. We describe the association of genetic variation in the ACE gene in 1,365 DCCT/EDIC subjects with incident persistent microalbuminuria (n = 312) and severe nephropathy (n = 115). We studied three markers (rs1800764, insertion/deletion, and rs9896208) in the ACE gene that allowed us to capture genetic variation in the common haplotypes occurring at frequencies of >5% in Caucasians. Compared with the more frequent genotype (D/I) for the insertion/deletion polymorphism, in multivariate models, the I/I genotype conferred a lower risk for persistent microalbuminuria (hazard ratio [HR] 0.62 [95% CI 0.43-0.89], P = 0.009) and severe nephropathy (0.56 [0.32-0.96], P = 0.033). Variation at the two other markers, rs1800764 and rs9896208, were also associated with these renal outcomes. In addition, homozygosity for the common haplotype TIC (which corresponded to the T, insertion, and C alleles at the three markers, rs1800764, insertion/deletion, and rs9896208, respectively) versus the CDT/TIC haplotype pair was associated with lower risk for development of persistent microalbuminuria (HR 0.49 [0.32-0.75], P = 0.0009) and severe nephropathy (0.41 [0.22-0.78], P = 0.006). Our findings in the DCCT/EDIC cohort provide strong evidence that genetic variation at the ACE gene is associated with the development of nephropathy in patients with type 1 diabetes.

4485. The rat diabetes susceptibility locus Iddm4 and at least one additional gene are required for autoimmune diabetes induced by viral infection.

作者: Elizabeth P Blankenhorn.;Lucy Rodemich.;Cristina Martin-Fernandez.;Jean Leif.;Dale L Greiner.;John P Mordes.
来源: Diabetes. 2005年54卷4期1233-7页
BBDR rats develop autoimmune diabetes only after challenge with environmental perturbants. These perturbants include polyinosinic:polycytidylic acid (poly I:C, a ligand of toll-like receptor 3), agents that deplete regulatory T-cell (Treg) populations, and a non-beta-cell cytopathic parvovirus (Kilham rat virus [KRV]). The dominant diabetes susceptibility locus Iddm4 is required for diabetes induced by treatment with poly I:C plus Treg depletion. Iddm4 is penetrant in congenic heterozygous rats on the resistant WF background and is 79% sensitive and 80% specific as a predictor of induced diabetes. Surprisingly, an analysis of 190 (BBDR x WF)F2 rats treated with KRV after brief exposure to poly I:C revealed that the BBDR-origin allele of Iddm4 is necessary but not entirely sufficient for diabetes expression. A genome scan identified a locus on chromosome 17, designated Iddm20, that is also required for susceptibility to diabetes after exposure to KRV and poly I:C (logarithm of odds score 3.7). These data suggest that the expression of autoimmune diabetes is a complex process that requires both major histocompatibility complex genes that confer susceptibility and additional genes such as Iddm4 and Iddm20 that operate only in the context of specific environmental perturbants, amplifying the immune response and the rate of disease progression.

4486. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program.

作者: William C Knowler.;Richard F Hamman.;Sharon L Edelstein.;Elizabeth Barrett-Connor.;David A Ehrmann.;Elizabeth A Walker.;Sarah E Fowler.;David M Nathan.;Steven E Kahn.; .
来源: Diabetes. 2005年54卷4期1150-6页
The Diabetes Prevention Program (DPP) was a randomized clinical trial of prevention of type 2 diabetes in high-risk people. Troglitazone, an insulin-sensitizing agent, was used initially but was discontinued during the trial. Troglitazone therapy was compared with other DPP interventions, considering both the short-term "in-trial" results and the longer-term results after troglitazone were discontinued. From 1996 to 1998, participants were randomly assigned to treatment with metformin (n = 587), troglitazone (n = 585), double placebo (n = 582), or intensive lifestyle intervention (ILS) (n = 589). Because of concern regarding its liver toxicity, the troglitazone arm was discontinued in June 1998, after which follow-up of all participants continued. During the mean 0.9 year (range 0.5-1.5 years) of troglitazone treatment, the diabetes incidence rate was 3.0 cases/100 person-years, compared with 12.0, 6.7, and 5.1 cases/100 person-years in the placebo, metformin, and ILS participants (P < 0.001, troglitazone vs. placebo; P = 0.02, troglitazone vs. metformin; P = 0.18, troglitazone vs. ILS). This effect of troglitazone was in part due to improved insulin sensitivity with maintenance of insulin secretion. During the 3 years after troglitazone withdrawal, the diabetes incidence rate was almost identical to that of the placebo group. Troglitazone, therefore, markedly reduced the incidence of diabetes during its limited period of use, but this action did not persist. Whether other thiazolidinedione drugs used for longer periods can safely prevent diabetes remains to be determined.

4487. Neuronatin, a downstream target of BETA2/NeuroD1 in the pancreas, is involved in glucose-mediated insulin secretion.

作者: Khoi Chu.;Ming-Jer Tsai.
来源: Diabetes. 2005年54卷4期1064-73页
BETA2 (NeuroD1) is a member of the basic helix-loop-helix transcription factor family. BETA2 plays an important role in the development of the pancreas and the nervous system. Using microarray technology, we identified neuronatin (Nnat) as differentially expressed between wild-type (WT) and knockout (KO) pancreatic RNA from embryonic day 14 (e14.5). NNAT is a member of the proteolipid family of amphipathic polypeptides and is believed to be involved in ion channel transport or channel modulation. Northern blot and in situ hybridization analysis of WT and KO samples confirmed the downregulation of Nnat in pancreas of mutant BETA2 embryos. Chromatin immunoprecipitation and gel shift assays were performed and demonstrated the presence of BETA2 on the Nnat promoter, thus confirming the direct transcriptional regulation of Nnat by BETA2. To assess NNAT potential function, we performed knockdown studies by siRNA in NIT cells and observed a reduction in the ability of the NIT cells to respond to glucose. These results suggest for the first time an important role for NNAT in insulin secretion and for proper beta-cell function.

4488. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity.

作者: Erin E Kershaw.;Nicholas M Morton.;Harveen Dhillon.;Lynne Ramage.;Jonathan R Seckl.;Jeffrey S Flier.
来源: Diabetes. 2005年54卷4期1023-31页
Local glucocorticoid (GC) action depends on intracellular GC metabolism by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). 11betaHSD1 activates GCs, while 11betaHSD2 inactivates GCs. Adipocyte-specific amplification of GCs through transgenic overexpression of 11betaHSD1 produces visceral obesity and the metabolic syndrome in mice. To determine whether adipocyte-specific inactivation of GCs protects against this phenotype, we created a transgenic model in which human 11betaHSD2 is expressed under the control of the murine adipocyte fatty acid binding protein (aP2) promoter (aP2-h11betaHSD2). Transgenic mice have increased 11betaHSD2 expression and activity exclusively in adipose tissue, with the highest levels in subcutaneous adipose tissue, while systemic indexes of GC exposure are unchanged. Transgenic mice resist weight gain on high-fat diet due to reduced fat mass accumulation. This improved energy balance is associated with decreased food intake, increased energy expenditure, and improved glucose tolerance and insulin sensitivity. Adipose tissue gene expression in transgenic mice is characterized by decreased expression of leptin and resistin and increased expression of adiponectin, peroxisome proliferator-activated receptor gamma, and uncoupling protein 2. These data suggest that reduction of active GCs exclusively in adipose tissue is an important determinant of a favorable metabolic phenotype with respect to energy homeostasis and the metabolic syndrome.

4489. Matrix metalloproteinases 2 and 9 are dispensable for pancreatic islet formation and function in vivo.

作者: Sabina E Perez.;David A Cano.;Trang Dao-Pick.;Jean-Phillipe Rougier.;Zena Werb.;Matthias Hebrok.
来源: Diabetes. 2005年54卷3期694-701页
Pancreatic islet formation is a highly regulated process that is initiated at the end of gestation in rodents. Endocrine precursor cells first form within the epithelium of duct-like structures and then delaminate from the epithelium, migrate, and cluster during the early stages of islet formation. The molecular mechanisms that regulate endocrine cell migration and islet formation are not well understood. Cell culture studies suggest that matrix metalloproteinases (MMPs) 2 and 9 are required for islet formation. To address whether MMP2 and MMP9 function are essential for endocrine cell migration and islet formation in vivo, we analyzed pancreas development in MMP2/MMP9 double-deficient mice. Our results show that islet architecture and function are unperturbed in these knockout mice, demonstrating that both MMP2 and MMP9 functions are dispensable for islet formation and endocrine cell differentiation. Our studies also show that a number of other MMPs are expressed at the time islet formation is initiated. This observation suggests that other MMPs may substitute for MMP2 and MMP9 loss in pancreatic tissue. However, islet formation is unaffected in transgenic mice with modified tissue inhibitor of metalloproteinase-1 (TIMP1) levels, suggesting that MMP activity may contribute little to islet morphogenesis in vivo.

4490. Calcineurin does not mediate exercise-induced increase in muscle GLUT4.

作者: Pablo M Garcia-Roves.;Terry E Jones.;Kenichi Otani.;Dong-Ho Han.;John O Holloszy.
来源: Diabetes. 2005年54卷3期624-8页
Exercise induces a rapid increase in expression of the GLUT4 isoform of the glucose transporter in skeletal muscle. One of the signals responsible for this adaptation appears to be an increase in cytosolic Ca(2+). Myocyte enhancer factor 2A (MEF2A) is a transcription factor that is involved in the regulation of GLUT4 expression. It has been reported that the Ca(2+)-regulated phosphatase calcineurin mediates the activation of MEF2 by exercise. It has also been shown that the expression of activated calcineurin in mouse skeletal muscle results in an increase in GLUT4. These findings suggest that increases in cytosolic Ca(2+) induce increased GLUT4 expression by activating calcineurin. However, we have obtained evidence that this response is mediated by a Ca(2+)-calmodulin-dependent protein kinase. The purpose of this study was to test the hypothesis that calcineurin is involved in mediating exercise-induced increases in GLUT4. Rats were exercised on 5 successive days using a swimming protocol. One group of swimmers was given 20 mg/kg body weight of cyclosporin, a calcineurin inhibitor, 2 h before exercise. A second group was given vehicle. GLUT4 protein was increased approximately 80%, GLUT4 mRNA was increased approximately 2.5-fold, MEF2A protein was increased twofold, and hexokinase II protein was increased approximately 2.5-fold 18 h after the last exercise bout. The cyclosporin treatment completely inhibited calcineurin activity but did not affect the adaptive increases in GLUT4, MEF2A, or hexokinase expression. We conclude that calcineurin activation does not mediate the adaptive increase in GLUT4 expression induced in skeletal muscle by exercise.

4491. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes.

作者: Kitt Falk Petersen.;Sylvie Dufour.;Douglas Befroy.;Michael Lehrke.;Rosa E Hendler.;Gerald I Shulman.
来源: Diabetes. 2005年54卷3期603-8页
To examine the mechanism by which moderate weight reduction improves basal and insulin-stimulated rates of glucose metabolism in patients with type 2 diabetes, we used (1)H magnetic resonance spectroscopy to assess intrahepatic lipid (IHL) and intramyocellular lipid (IMCL) content in conjunction with hyperinsulinemic-euglycemic clamps using [6,6-(2)H(2)]glucose to assess rates of glucose production and insulin-stimulated peripheral glucose uptake. Eight obese patients with type 2 diabetes were studied before and after weight stabilization on a moderately hypocaloric very-low-fat diet (3%). The diabetic patients were markedly insulin resistant in both liver and muscle compared with the lean control subjects. These changes were associated with marked increases in IHL (12.2 +/- 3.4 vs. 0.6 +/- 0.1%; P = 0.02) and IMCL (2.0 +/- 0.3 vs. 1.2 +/- 0.1%; P = 0.02) compared with the control subjects. A weight loss of only approximately 8 kg resulted in normalization of fasting plasma glucose concentrations (8.8 +/- 0.5 vs. 6.4 +/- 0.3 mmol/l; P < 0.0005), rates of basal glucose production (193 +/- 7 vs. 153 +/- 10 mg/min; P < 0.0005), and the percentage suppression of hepatic glucose production during the clamp (29 +/- 22 vs. 99 +/- 3%; P = 0.003). These improvements in basal and insulin-stimulated hepatic glucose metabolism were associated with an 81 +/- 4% reduction in IHL (P = 0.0009) but no significant change in insulin-stimulated peripheral glucose uptake or IMCL (2.0 +/- 0.3 vs. 1.9 +/- 0.3%; P = 0.21). In conclusion, these data support the hypothesis that moderate weight loss normalizes fasting hyperglycemia in patients with poorly controlled type 2 diabetes by mobilizing a relatively small pool of IHL, which reverses hepatic insulin resistance and normalizes rates of basal glucose production, independent of any changes in insulin-stimulated peripheral glucose metabolism.

4492. High glucose regulates the activity of cardiac sarcolemmal ATP-sensitive K+ channels via 1,3-bisphosphoglycerate: a novel link between cardiac membrane excitability and glucose metabolism.

作者: Sofija Jovanović.;Aleksandar Jovanović.
来源: Diabetes. 2005年54卷2期383-93页
Because we were interested in assessing glucose-mediated regulation of the activity of sarcolemmal ATP-sensitive K(+) channels (K(ATP) channels) (which are closed by physiological levels of intracellular ATP and serve to couple intracellular metabolism with the membrane excitability in the heart) during ischemia, we performed experiments designed to test whether high extracellular glucose would have effects on sarcolemmal K(ATP) channels per se. Surprisingly, we found that high extracellular glucose (50 mmol/l) activates sarcolemmal K(ATP) channels in isolated guinea pig cardiomyocytes. To activate K(ATP) channels, glucose had to be transported into cardiomyocytes and subjected to glycolysis. The activation of these channels was independent of ATP production and intracellular ATP levels. The effect of glucose on sarcolemmal K(ATP) channels was mediated by the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase and consequent generation of 1,3-bisphosphoglycerate. The 1,3-bisphosphoglycerate (20 mmol/l), an intermediate product of glycolysis, directly targeted and activated K(ATP) channels, despite physiological levels of intracellular ATP (5 mmol/l). We conclude that glucose, so far exclusively viewed as a metabolic fuel in the heart important only during ischemia/hypoxia, may serve a signaling role in the nonstressed myocardium by producing an agent that regulates cardiac membrane excitability independently of high-energy phosphates.

4493. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets.

作者: Barry J Goldstein.;Kalyankar Mahadev.;Xiangdong Wu.
来源: Diabetes. 2005年54卷2期311-21页
Propelled by the identification of a small family of NADPH oxidase (Nox) enzyme homologs that produce superoxide in response to cellular stimulation with various growth factors, renewed interest has been generated in characterizing the signaling effects of reactive oxygen species (ROS) in relation to insulin action. Two key observations made >30 years ago-that oxidants can facilitate or mimic insulin action and that H(2)O(2) is generated in response to insulin stimulation of its target cells-have led to the hypothesis that ROS may serve as second messengers in the insulin action cascade. Specific molecular targets of insulin-induced ROS include enzymes whose signaling activity is modified via oxidative biochemical reactions, leading to enhanced insulin signal transduction. These positive responses to cellular ROS may seem "paradoxical" because chronic exposure to relatively high levels of ROS have also been associated with functional beta-cell impairment and the chronic complications of diabetes. The best-characterized molecular targets of ROS are the protein-tyrosine phosphatases (PTPs) because these important signaling enzymes require a reduced form of a critical cysteine residue for catalytic activity. PTPs normally serve as negative regulators of insulin action via the dephosphorylation of the insulin receptor and its tyrosine-phosphorylated cellular substrates. However, ROS can rapidly oxidize the catalytic cysteine of target PTPs, effectively blocking their enzyme activity and reversing their inhibitory effect on insulin signaling. Among the cloned Nox homologs, we have recently provided evidence that Nox4 may mediate the insulin-stimulated generation of cellular ROS and is coupled to insulin action via the oxidative inhibition of PTP1B, a PTP known to be a major regulator of the insulin signaling cascade. Further characterization of the molecular components of this novel signaling cascade, including the mechanism of ROS generated by insulin and the identification of various oxidation-sensitive signaling targets in insulin-sensitive cells, may provide a novel means of facilitating insulin action in states of insulin resistance.

4494. Genetic linkage and association of the growth hormone secretagogue receptor (ghrelin receptor) gene in human obesity.

作者: Andrea Baessler.;Michael J Hasinoff.;Marcus Fischer.;Wibke Reinhard.;Gabriele E Sonnenberg.;Michael Olivier.;Jeanette Erdmann.;Heribert Schunkert.;Angela Doering.;Howard J Jacob.;Anthony G Comuzzie.;Ahmed H Kissebah.;Anne E Kwitek.
来源: Diabetes. 2005年54卷1期259-67页
The growth hormone secretagogue receptor (GHSR) (ghrelin receptor) plays an important role in the regulation of food intake and energy homeostasis. The GHSR gene lies on human chromosome 3q26 within a quantitative trait locus strongly linked to multiple phenotypes related to obesity and the metabolic syndrome. Because the biological function and location of the GHSR gene make it an excellent candidate gene, we tested the relation between common single nucleotide polymorphisms (SNPs) in the GHSR gene and human obesity. We performed a comprehensive analysis of SNPs, linkage disequilibrium (LD), and haplotype structure across the entire GHSR gene region (99.3 kb) in 178 pedigrees with multiple obese members (DNA of 1,095 Caucasians) and in an independent sample of the general population (MONICA Augsburg left ventricular hypertrophy substudy; DNA of 1,418 Caucasians). The LD analysis revealed a disequilibrium block consisting of five SNPs, consistent in both study cohorts. We found linkage among all five SNPs, their haplotypes, and BMI. Further, we found suggestive evidence for transmission disequilibrium for the minor SNP alleles (P < 0.05) and the two most common haplotypes with the obesity affection status ("susceptible" P = 0.025, "nonsusceptible" P = 0.045) in the family cohort using the family-based association test program. Replication of these findings in the general population resulted in stronger evidence for an association of the SNPs (best P = 0.00001) and haplotypes with the disease ("susceptible" P = 0.002, "nonsusceptible" P = 0.002). To our knowledge, these data are the first to demonstrate linkage and association of SNPs and haplotypes within the GHSR gene region and human obesity. This linkage, together with significant transmission disequilibrium in families and replication of this association in an independent population, provides evidence that common SNPs and haplotypes within the GHSR region are involved in the pathogenesis of human obesity.

4495. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications.

作者: Irina G Obrosova.;Pal Pacher.;Csaba Szabó.;Zsuzsanna Zsengeller.;Hiroko Hirooka.;Martin J Stevens.;Mark A Yorek.
来源: Diabetes. 2005年54卷1期234-42页
This study evaluated the effects of aldose reductase inhibition on diabetes-induced oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation. In animal experiments, control and streptozotocin-induced diabetic rats were treated with or without the aldose reductase inhibitor (ARI) fidarestat (16 mg . kg(-1) . day(-1)) for 6 weeks starting from induction of diabetes. Sorbitol pathway intermediate, but not glucose, accumulation in sciatic nerve and retina was completely prevented in diabetic rats treated with fidarestat. Sciatic motor nerve conduction velocity, hindlimb digital sensory nerve conduction velocity, and sciatic nerve concentrations of two major nonenzymatic antioxidants, glutathione and ascorbate, were reduced in diabetic versus control rats, and these changes were prevented in diabetic rats treated with fidarestat. Fidarestat prevented the diabetes-induced increase in nitrotyrosine (a marker of peroxynitrite-induced injury) and poly(ADP-ribose) immunoreactivities in sciatic nerve and retina. Fidarestat counteracted increased superoxide formation in aorta and epineurial vessels and in in vitro studies using hyperglycemia-exposed endothelial cells, and the DCF test/flow cytometry confirmed the endothelial origin of this phenomenon. Fidarestat did not cause direct inhibition of PARP activity in a cell-free system containing PARP and NAD(+) but did counteract high-glucose-induced PARP activation in Schwann cells. In conclusion, aldose reductase inhibition counteracts diabetes-induced nitrosative stress and PARP activation in sciatic nerve and retina. These findings reveal the new beneficial properties of fidarestat, thus further justifying the ongoing clinical trials of this specific, potent, and low-toxic ARI.

4496. High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells.

作者: Li-Zhen Cao.;Dong-Qi Tang.;Marko E Horb.;Shi-Wu Li.;Li-Jun Yang.
来源: Diabetes. 2004年53卷12期3168-78页
Pdx1 has been shown to convert hepatocytes into both exocrine and endocrine pancreatic cells in mice, but it fails to selectively convert hepatocytes into pure insulin-producing cells (IPCs). The molecular mechanisms underlying the transdifferentiation remain unclear. In this study, we generated a stably transfected rat hepatic cell line named WB-1 that expresses an active form of Pdx1 along with a reporter gene, RIP-eGFP. Our results demonstrate that Pdx1 induces the expression of multiple genes related to endocrine pancreas development and islet function in these liver cells. We do not however find any expression of the late-stage genes (Pax4, Pax6, Isl-1, and MafA) related to beta-cell development, and the cells do not secrete insulin upon the glucose challenge. Yet when WB-1 cells are transplanted into diabetic NOD-scid mice, these genes become activated and hyperglycemia is completely reversed. Detailed comparison of gene expression profiles between pre- and posttransplanted WB-1 cells demonstrates that the WB-1 cells have similar properties as that seen in pancreatic beta-cells. In addition, in vitro culture in high-glucose medium is sufficient to induce complete maturation of WB-1 cells into functional IPCs. In summary, we find that Pdx1-VP16 is able to selectively convert hepatic cells into pancreatic endocrine precursor cells. However, complete transdifferentiation into functional IPCs requires additional external factors, including high glucose or hyperglycemia. Thus, transdifferentiation of hepatocytes into functional IPCs may serve as a viable therapeutic option for patients with type 1 diabetes.

4497. Variation in NCB5OR: studies of relationships to type 2 diabetes, maturity-onset diabetes of the young, and gestational diabetes mellitus.

作者: Gitte Andersen.;Lise Wegner.;Christian Schack Rose.;Jianxin Xie.;Hao Zhu.;Kevin Larade.;Anders Johansen.;Jakob Ek.;Jeannet Lauenborg.;Thomas Drivsholm.;Knut Borch-Johnsen.;Peter Damm.;Torben Hansen.;H Franklin Bunn.;Oluf Pedersen.
来源: Diabetes. 2004年53卷11期2992-7页
Recent data show that homozygous Ncb5or(-/-) knock-out mice present with an early-onset nonautoimmune diabetes phenotype. Furthermore, genome-wide scans have reported linkage to the chromosome 6q14.2 region close to the human NCB5OR. We therefore considered NCB5OR to be a biological and positional candidate gene and examined the coding region of NCB5OR in 120 type 2 diabetic patients and 63 patients with maturity-onset diabetes of the young using denaturing high-performance liquid chromatography. We identified a total of 22 novel nucleotide variants. Three variants [IVS5+7del(CT), Gln187Arg, and His223Arg] were genotyped in a case-control design comprising 1,246 subjects (717 type 2 diabetic patients and 529 subjects with normal glucose tolerance). In addition, four rare variants were investigated for cosegregation with diabetes in multiplex type 2 diabetic families. The IVS5+7del(CT) variant was associated with common late-onset type 2 diabetes; however, we failed to relate this variant to any diabetes-related quantitative traits among the 529 control subjects. Thus, variation in the coding region of NCB5OR is not a major contributor in the pathogenesis of nonautoimmune diabetes.

4498. Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure.

作者: Saida Abdelli.;Jeff Ansite.;Raphael Roduit.;Tiziana Borsello.;Ippei Matsumoto.;Toshiya Sawada.;Nathalie Allaman-Pillet.;Hugues Henry.;Jacques S Beckmann.;Bernhard J Hering.;Christophe Bonny.
来源: Diabetes. 2004年53卷11期2815-23页
Pancreatic islet transplantation may successfully restore normoglycemia in type 1 diabetic patients. However, successful grafting requires transplantation of a sufficient number of islets, usually requiring two or more donors. During the isolation process and following clinical transplantation, islets are subjected to severe adverse conditions that impair survival and ultimately contribute to graft failure. Here, we have mapped the major intracellular stress-signaling pathways that may mediate human islet loss during isolation and following cytokine attack. We found that the isolation procedure potently recruits two pathways consisting of |mitogen-activated protein kinase kinase (MKK)7 --> Jun NH(2)-terminal kinase (JNK)/p38 --> c-fos| and the |nuclear factor-kappaB (NF-kappaB) --> iNOS| module. Cytokines activate the |NF-kappaB --> iNOS| and |MKK4/MKK3/6 --> JNK/p38| pathways without recruitment of c-fos. Culturing the islets for 48 h after isolation allows for the activated pathways to return to background levels, with expression of MKK7 becoming undetectable. These data indicate that isolation and cytokines recruit different death pathways. Therefore, strategies might be rationally developed to avoid possible synergistic activation of these pathways in mediating islet loss during isolation and following grafting.

4499. Increased serum levels of MRP-8/14 in type 1 diabetes induce an increased expression of CD11b and an enhanced adhesion of circulating monocytes to fibronectin.

作者: Gerben Bouma.;Wai Kwan Lam-Tse.;Annet F Wierenga-Wolf.;Hemmo A Drexhage.;Marjan A Versnel.
来源: Diabetes. 2004年53卷8期1979-86页
The recruitment of monocytes from the bloodstream is crucial in the accumulation of macrophages and dendritic cells in type 1 diabetic pancreases. Adhesion via integrins to endothelium and extracellular matrix proteins, such as fibronectin (FN), and the production of myeloid-related protein (MRP)-8, -14, and -8/14 by recently transmigrated monocytes are thought to be instrumental in such recruitment. We determined the FN-adhesive capacity and integrin expression of monocytes of type 1 and type 2 diabetic patients and related them to the subjects' serum levels of MRP-8, -14 and -8/14. Monocytes of type 1 diabetic patients displayed an increased adhesion to fibronectin in comparison with type 2 patients and healthy control subjects but had a normal expression of the FN binding integrins CD29, CD49a, CD49d, and CD49e (although CD11b and CD18 expression was increased). MRP-8/14, which was increased in the sera of type 1 diabetic patients, induced healthy donor monocytes to adhere to FN and upregulate CD11b expression in a dosage-dependent manner. The observed MRP-induced increased adhesion of monocytes to FN and upregulation of CD11b most likely contributed to a facilitated accumulation of monocytes and monocyte-derived cells at the site of inflammation, in this case the pancreatic islets.

4500. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis.

作者: Josephine M Forbes.;Louis Teo Loon Yee.;Vicki Thallas.;Markus Lassila.;Riccardo Candido.;Karin A Jandeleit-Dahm.;Merlin C Thomas.;Wendy C Burns.;Elizabeth K Deemer.;Susan R Thorpe.;Mark E Cooper.;Terri J Allen.
来源: Diabetes. 2004年53卷7期1813-23页
Advanced glycation end product (AGE) formation may contribute to the progression of atherosclerosis, particularly in diabetes. The present study explored atherosclerosis in streptozotocin-induced diabetic apolipoprotein E-deficient (apoE-/-) mice that were randomized (n = 20) to receive for 20 weeks no treatment, the AGE cross-link breaker ALT-711, or the inhibitor of AGE formation aminoguanidine (AG). A sixfold increase in plaque area with diabetes was attenuated by 30% with ALT-711 and by 40% in AG-treated mice. Regional distribution of plaque demonstrated no reduction in plaque area or complexity within the aortic arch with treatment, in contrast to the thoracic and abdominal aortas, where significant attenuation was seen. Diabetes-associated accumulation of AGEs in aortas and plasma and decreases in skin collagen solubility were ameliorated by both treatments, in addition to reductions in the vascular receptor for AGE. Collagen-associated reductions in the AGEs carboxymethyllysine and carboxyethyllysine were identified with both treatments. Diabetes was also accompanied by aortic accumulation of total collagen, specifically collagens I, III, and IV, as well as increases in the profibrotic cytokines transforming growth factor-beta and connective tissue growth factor and in cellular alpha-smooth muscle actin. Attenuation of these changes was seen in both treated diabetic groups. ALT-711 and AG demonstrated the ability to reduce vascular AGE accumulation in addition to attenuating atherosclerosis in these diabetic mice.
共有 4581 条符合本次的查询结果, 用时 2.1930086 秒