当前位置: 首页 >> 检索结果
共有 17498 条符合本次的查询结果, 用时 3.1004923 秒

301. Pharmacological Activation of PDC Flux Reverses Lipid-Induced Inhibition of Insulin Action in Muscle During Recovery From Exercise.

作者: Christian S Carl.;Marie M Jensen.;Kim A Sjøberg.;Dumitru Constantin-Teodosiu.;Ian R Hill.;Rasmus Kjøbsted.;Paul L Greenhaff.;Jørgen F P Wojtaszewski.;Erik A Richter.;Andreas M Fritzen.;Bente Kiens.
来源: Diabetes. 2024年73卷7期1072-1083页
Insulin resistance is a risk factor for type 2 diabetes, and exercise can improve insulin sensitivity. However, following exercise, high circulating fatty acid (FA) levels might counteract this. We hypothesized that such inhibition would be reduced by forcibly increasing carbohydrate oxidation through pharmacological activation of the pyruvate dehydrogenase complex (PDC). Insulin-stimulated glucose uptake was examined with a crossover design in healthy young men (n = 8) in a previously exercised and a rested leg during a hyperinsulinemic-euglycemic clamp 5 h after one-legged exercise with 1) infusion of saline, 2) infusion of intralipid imitating circulating FA levels during recovery from whole-body exercise, and 3) infusion of intralipid + oral PDC activator, dichloroacetate (DCA). Intralipid infusion reduced insulin-stimulated glucose uptake by 19% in the previously exercised leg, which was not observed in the contralateral rested leg. Interestingly, this effect of intralipid in the exercised leg was abolished by DCA, which increased muscle PDC activity (130%) and flux (acetylcarnitine 130%) and decreased inhibitory phosphorylation of PDC on Ser293 (∼40%) and Ser300 (∼80%). Novel insight is provided into the regulatory interaction between glucose and lipid metabolism during exercise recovery. Coupling exercise and PDC flux activation upregulated the capacity for both glucose transport (exercise) and oxidation (DCA), which seems necessary to fully stimulate insulin-stimulated glucose uptake during recovery.

302. Engineering a Pathway to Glucose-Responsive Therapeutics.

作者: Matthew J Webber.
来源: Diabetes. 2024年73卷7期1032-1038页
In 2014, the American Diabetes Association instituted a novel funding paradigm to support diabetes research through its Pathway to Stop Diabetes program. This program took a multifaceted approach to providing key funding to diabetes researchers to advance a broad spectrum of research programs on all aspects of understanding, managing, and treating diabetes. Here, the personal perspective of a 2019 Pathway Accelerator awardee is offered, describing a research program seeking to advance a materials-centered approach to engineering glucose-responsive devices and new delivery tools for better therapeutic outcomes in treating diabetes. This is offered alongside a personal reflection on 5 years of support from the ADA Pathway Program.

303. Efficient Vascular and Neural Engraftment of Stem Cell-Derived Islets.

作者: Julia Thorngren.;Anja Brboric.;Svitlana Vasylovska.;Daisy Hjelmqvist.;Gunilla T Westermark.;Jonna Saarimäki-Vire.;Jouni Kvist.;Diego Balboa.;Timo Otonkoski.;Per-Ola Carlsson.;Joey Lau.
来源: Diabetes. 2024年73卷7期1127-1139页
Pluripotent stem cell-derived islets (SC-islets) have emerged as a new source for β-cell replacement therapy. The function of human islet transplants is hampered by excessive cell death posttransplantation; contributing factors include inflammatory reactions, insufficient revascularization, and islet amyloid formation. However, there is a gap in knowledge of the engraftment process of SC-islets. In this experimental study, we investigated the engraftment capability of SC-islets at 3 months posttransplantation and observed that cell apoptosis rates were lower but vascular density was similar in SC-islets compared with human islets. Whereas the human islet transplant vascular structures were a mixture of remnant donor endothelium and ingrowing blood vessels, the SC-islets contained ingrowing blood vessels only. Oxygenation in the SC-islet grafts was twice as high as that in the corresponding grafts of human islets, suggesting better vascular functionality. Similar to the blood vessel ingrowth, reinnervation of the SC-islets was four- to fivefold higher than that of the human islets. Both SC-islets and human islets contained amyloid at 1 and 3 months posttransplantation. We conclude that the vascular and neural engraftment of SC-islets are superior to those of human islets, but grafts of both origins develop amyloid, with potential long-term consequences.

304. Genetic Subtypes of Prediabetes, Healthy Lifestyle, and Risk of Type 2 Diabetes.

作者: Yang Li.;Guo-Chong Chen.;Jee-Young Moon.;Rhonda Arthur.;Daniela Sotres-Alvarez.;Martha L Daviglus.;Amber Pirzada.;Josiemer Mattei.;Krista M Perreira.;Jerome I Rotter.;Kent D Taylor.;Yii-Der Ida Chen.;Sylvia Wassertheil-Smoller.;Tao Wang.;Thomas E Rohan.;Joel D Kaufman.;Robert Kaplan.;Qibin Qi.
来源: Diabetes. 2024年73卷7期1178-1187页
Prediabetes is a heterogenous metabolic state with various risks for development of type 2 diabetes (T2D). In this study, we used genetic data on 7,227 US Hispanic/Latino participants without diabetes from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) and 400,149 non-Hispanic White participants without diabetes from the UK Biobank (UKBB) to calculate five partitioned polygenetic risk scores (pPRSs) representing various pathways related to T2D. Consensus clustering was performed in participants with prediabetes in HCHS/SOL (n = 3,677) and UKBB (n = 16,284) separately based on these pPRSs. Six clusters of individuals with prediabetes with distinctive patterns of pPRSs and corresponding metabolic traits were identified in the HCHS/SOL, five of which were confirmed in the UKBB. Although baseline glycemic traits were similar across clusters, individuals in cluster 5 and cluster 6 showed an elevated risk of T2D during follow-up compared with cluster 1 (risk ratios [RRs] 1.29 [95% CI 1.08, 1.53] and 1.34 [1.13, 1.60], respectively). Inverse associations between a healthy lifestyle score and risk of T2D were observed across different clusters, with a suggestively stronger association observed in cluster 5 compared with cluster 1. Among individuals with a healthy lifestyle, those in cluster 5 had a similar risk of T2D compared with those in cluster 1 (RR 1.03 [0.91, 1.18]). This study identified genetic subtypes of prediabetes that differed in risk of progression to T2D and in benefits from a healthy lifestyle.

305. Engineering a Pathway to Glucose-Responsive Therapeutics.

作者: Matthew J Webber.
来源: Diabetes. 2024年
In 2014, the American Diabetes Association instituted a novel funding paradigm to support diabetes research through its Pathway to Stop Diabetes® Program. Pathway took a multifaceted approach to provide key funding to diabetes researchers in advancing a broad spectrum of research programs centered on all aspects of understanding, managing, and treating diabetes. Herein the personal perspective of a 2019 Pathway Accelerator awardee is offered, describing a research program seeking to advance a materials-centered approach to engineering glucose-responsive devices and new delivery tools for better therapeutic outcomes in treating diabetes. This is offered alongside a personal reflection on five years of support from the ADA Pathway Program.

306. Comment on Pataky et al. Divergent Skeletal Muscle Metabolomic Signatures of Different Exercise Training Modes Independently Predict Cardiometabolic Risk Factors. Diabetes 2024;73:23-37.

作者: Adam Astrada.
来源: Diabetes. 2024年73卷6期e3页

307. Role of Cardiorespiratory Fitness and Mitochondrial Oxidative Capacity in Reduced Walk Speed of Older Adults With Diabetes.

作者: Sofhia V Ramos.;Giovanna Distefano.;Li-Yung Lui.;Peggy M Cawthon.;Philip Kramer.;Ian J Sipula.;Fiona M Bello.;Theresa Mau.;Michael J Jurczak.;Anthony J Molina.;Erin E Kershaw.;David J Marcinek.;Eric Shankland.;Frederico G S Toledo.;Anne B Newman.;Russell T Hepple.;Stephen B Kritchevsky.;Bret H Goodpaster.;Steven R Cummings.;Paul M Coen.
来源: Diabetes. 2024年73卷7期1048-1057页
Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults, but their impact on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes, as well as determined their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n = 159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles compared with those without diabetes (n = 717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. Four-meter and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walking speed between older adults with and without diabetes. Additional adjustments for BMI and comorbidities further explained the group differences in walking speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes.

308. Genetic Evidence for Distinct Biological Mechanisms That Link Adiposity to Type 2 Diabetes: Toward Precision Medicine.

作者: Angela Abraham.;Madeleine Cule.;Marjola Thanaj.;Nicolas Basty.;M Amin Hashemloo.;Elena P Sorokin.;Brandon Whitcher.;Stephen Burgess.;Jimmy D Bell.;Naveed Sattar.;E Louise Thomas.;Hanieh Yaghootkar.
来源: Diabetes. 2024年73卷6期1012-1025页
We aimed to unravel the mechanisms connecting adiposity to type 2 diabetes. We used MR-Clust to cluster independent genetic variants associated with body fat percentage (388 variants) and BMI (540 variants) based on their impact on type 2 diabetes. We identified five clusters of adiposity-increasing alleles associated with higher type 2 diabetes risk (unfavorable adiposity) and three clusters associated with lower risk (favorable adiposity). We then characterized each cluster based on various biomarkers, metabolites, and MRI-based measures of fat distribution and muscle quality. Analyzing the metabolic signatures of these clusters revealed two primary mechanisms connecting higher adiposity to reduced type 2 diabetes risk. The first involves higher adiposity in subcutaneous tissues (abdomen and thigh), lower liver fat, improved insulin sensitivity, and decreased risk of cardiometabolic diseases and diabetes complications. The second mechanism is characterized by increased body size and enhanced muscle quality, with no impact on cardiometabolic outcomes. Furthermore, our findings unveil diverse mechanisms linking higher adiposity to higher disease risk, such as cholesterol pathways or inflammation. These results reinforce the existence of adiposity-related mechanisms that may act as protective factors against type 2 diabetes and its complications, especially when accompanied by reduced ectopic liver fat.

309. Epistasis Between HLA-DRB1*16:02:01 and SLC16A11 T-C-G-T-T Reduces Odds for Type 2 Diabetes in Southwest American Indians.

作者: Robert C Williams.;Robert L Hanson.;Bjoern Peters.;Kendall Kearns.;William C Knowler.;Clifton Bogardus.;Leslie J Baier.
来源: Diabetes. 2024年73卷6期1002-1011页
We sought to identify genetic/immunologic contributors of type 2 diabetes (T2D) in an indigenous American community by genotyping all study participants for both high-resolution HLA-DRB1 alleles and SLC16A11 to test their risk and/or protection for T2D. These genes were selected based on independent reports that HLA-DRB1*16:02:01 is protective for T2D and that SLC16A11 associates with T2D in individuals with BMI <35 kg/m2. Here, we test the interaction of the two loci with a more complete data set and perform a BMI sensitivity test. We defined the risk protection haplotype of SLC16A11, T-C-G-T-T, as allele 2 of a diallelic genetic model with three genotypes, SLC16A11*11, *12, and *22, where allele 1 is the wild type. Both earlier findings were confirmed. Together in the same logistic model with BMI ≥35 kg/m2, DRB1*16:02:01 remains protective (odds ratio [OR] 0.73), while SLC16A11 switches from risk to protection (OR 0.57 [*22] and 0.78 [*12]); an added interaction term was statistically significant (OR 0.49 [*12]). Bootstrapped (b = 10,000) statistical power of interaction, 0.4801, yielded a mean OR of 0.43. Sensitivity analysis demonstrated that the interaction is significant in the BMI range of 30-41 kg/m2. To investigate the epistasis, we used the primary function of the HLA-DRB1 molecule, peptide binding and presentation, to search the entire array of 15-mer peptides for both the wild-type and ancient human SLC16A11 molecules for a pattern of strong binding that was associated with risk and protection for T2D. Applying computer binding algorithms suggested that the core peptide at SLC16A11 D127G, FSAFASGLL, might be key for moderating risk for T2D with potential implications for type 1 diabetes.

310. Adiponectin Reduces Glomerular Endothelial Glycocalyx Disruption and Restores Glomerular Barrier Function in a Mouse Model of Type 2 Diabetes.

作者: Sarah Fawaz.;Aldara Martin Alonso.;Yan Qiu.;Raina Ramnath.;Holly Stowell-Connolly.;Monica Gamez.;Carl May.;Colin Down.;Richard J Coward.;Matthew J Butler.;Gavin I Welsh.;Simon C Satchell.;Rebecca R Foster.
来源: Diabetes. 2024年73卷6期964-976页
Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.

311. Effect of Dapagliflozin on Renal and Hepatic Glucose Kinetics in T2D and NGT Subjects.

作者: Xi Chen.;Devjit Tripathy.;Robert Chilton.;Andrea Hansis-Diarte.;Marzieh Salehi.;Carolina Solis-Herrera.;Eugenio Cersosimo.;Ralph A DeFronzo.
来源: Diabetes. 2024年73卷6期896-902页
Acute and chronic sodium-glucose cotransporter 2 (SGLT-2) inhibition increases endogenous glucose production (EGP). However, the organ-liver versus kidney-responsible for the increase in EGP has not been identified. In this study, 20 subjects with type 2 diabetes (T2D) and 12 subjects with normal glucose tolerance (NGT) received [3-3H]glucose infusion (to measure total EGP) combined with arterial and renal vein catheterization and para-aminohippuric acid infusion for determination of renal blood flow. Total EGP, net renal arteriovenous balance, and renal glucose production were measured before and 4 h after dapagliflozin (DAPA) and placebo administration. Following DAPA, EGP increased in both T2D and NGT from baseline to 240 min, while there was a significant time-related decrease after placebo in T2D. Renal glucose production at baseline was <5% of basal EGP in both groups and did not change significantly following DAPA in NGT or T2D. Renal glucose uptake (sum of tissue glucose uptake plus glucosuria) increased in both T2D and NGT following DAPA (P < 0.05 vs. placebo). The increase in renal glucose uptake was entirely explained by the increase in glucosuria. A single dose of DAPA significantly increased EGP, which primarily is explained by an increase in hepatic glucose production, establishing the existence of a novel renal-hepatic axis.

312. Metabolic-Bariatric Surgery for Type 2 Diabetes: Time(ing) for a Change.

作者: Jonathan Q Purnell.
来源: Diabetes. 2024年73卷4期542-544页

313. The Ailing β-Cell in Diabetes: Insights From a Trip to the ER: The 2023 Outstanding Scientific Achievement Award Lecture.

作者: Carmella Evans-Molina.
来源: Diabetes. 2024年73卷4期545-553页
The synthesis, processing, and secretion of insulin by the pancreatic β-cell is key for the maintenance of systemic metabolic homeostasis, and loss or dysfunction of β-cells underlies the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Work in the Evans-Molina laboratory over the past 15 years has pioneered the idea that regulation of calcium dynamics is critical to β-cell biology and diabetes pathophysiology. In this article, I will share three vignettes from the laboratory that demonstrate our bench-to-bedside approach to determining mechanisms of β-cell stress that could improve therapeutic options and outcomes for individuals living with diabetes. The first of these vignettes will illustrate a role for the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump in the regulation of endoplasmic reticulum (ER) calcium, protein trafficking, and proinsulin processing within the β-cell. The second vignette will highlight how alterations in β-cell calcium signaling intersect with T1D pathogenesis. The final vignette will demonstrate how activation of β-cell stress pathways may serve as an anchor to inform biomarker strategies in T1D. Lastly, I will share my vision for the future of diabetes care, where multiple biomarkers of β-cell stress may be combined with additional immune and metabolic biomarkers to better predict disease risk and improve therapies to prevent or delay T1D development.

314. Response to Comment on Pataky et al. Divergent Skeletal Muscle Metabolomic Signatures of Different Exercise Training Modes Independently Predict Cardiometabolic Risk Factors. Diabetes 2024;73:23-37.

作者: Mark W Pataky.;K Sreekumaran Nair.
来源: Diabetes. 2024年73卷6期e4-e5页

315. Comparison of β-Cell Function and Insulin Sensitivity Between Normal-Weight and Obese Chinese With Young-Onset Type 2 Diabetes.

作者: Yingnan Fan.;Elaine Chow.;Cadmon K P Lim.;Yong Hou.;Sandra T F Tsoi.;Baoqi Fan.;Eric S H Lau.;Alice P S Kong.;Ronald C W Ma.;Hongjiang Wu.;Juliana C N Chan.;Andrea O Y Luk.
来源: Diabetes. 2024年73卷6期953-963页
Normal-weight individuals with usual-onset type 2 diabetes have reduced β-cell function and greater insulin sensitivity compared with their obese counterparts. The relative contribution of β-cell dysfunction and insulin resistance to young-onset type 2 diabetes (YOD) among normal-weight individuals is not well established. In 44 individuals with YOD (24 with normal weight and 20 with obesity) and 24 healthy control individuals with normoglycemia (12 with normal weight and 12 with obesity), we conducted 2-h 12 mmol/L hyperglycemic clamps to measure acute (0-10 min) and steady-state (100-120 min) insulin and C-peptide responses, as well as insulin sensitivity index. Normal-weight individuals with YOD had lower acute insulin response, steady-state insulin and C-peptide responses, and a higher insulin sensitivity index compared with their obese counterparts with YOD. Compared with BMI-matched healthy control individuals, normal-weight individuals with YOD had lower acute and steady-state insulin and C-peptide responses but a similar insulin sensitivity index. The impairment of steady-state β-cell response relative to healthy control individuals was more pronounced in normal-weight versus obese individuals with YOD. In conclusion, normal-weight Chinese with YOD exhibited worse β-cell function but preserved insulin sensitivity relative to obese individuals with YOD and BMI-matched healthy individuals with normoglycemia. The selection of glucose-lowering therapy should account for pathophysiological differences underlying YOD between normal-weight and obese individuals.

316. CPT1A Protects Podocytes From Lipotoxicity and Apoptosis In Vitro and Alleviates Diabetic Nephropathy In Vivo.

作者: Yajuan Xie.;Qian Yuan.;Ben Tang.;Yaru Xie.;Yiling Cao.;Yang Qiu.;Jieyu Zeng.;Zhiwen Wang.;Hua Su.;Chun Zhang.
来源: Diabetes. 2024年73卷6期879-895页
Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment.

317. Intermittent Fasting-Improved Glucose Homeostasis Is Not Entirely Dependent on Caloric Restriction in db/db Male Mice.

作者: Dinghao Zheng.;Xiaosi Hong.;Xiaodan He.;Jianghong Lin.;Shujin Fan.;Jinli Wu.;Zhuoxian Liang.;Sifan Chen.;Li Yan.;Meng Ren.;Wei Wang.
来源: Diabetes. 2024年73卷6期864-878页
Intermittent fasting (IF), which involves prolonged fasting intervals accompanied by caloric restriction (CR), is an effective dietary treatment for obesity and diabetes. Although IF offers many benefits, it is difficult to determine whether these benefits are the consequences of CR. Every-other-day feeding (EODF) is a commonly used IF research model. This study was designed to identify factors, in addition to CR, responsible for the effects of EODF and the possible underlying mechanisms. Diabetic db/db mice were divided into three groups: ad libitum (AL), meal feeding (MF), and EODF. The MF model was used to attain a level of CR comparable to that of EODF, with food distribution evenly divided between 10:00 a.m. and 6:00 p.m., thereby minimizing the fasting interval. EODF yielded greater improvements in glucose homeostasis than MF in db/db mice by reducing fasting glucose levels and enhancing glucose tolerance. However, these effects on glucose metabolism were less pronounced in lean mice. Furthermore, ubiquitination of the liver-specific glucocorticoid (GC) receptor (GR) facilitated its degradation and downregulation of Kruppel-like factor 9 (KLF9), which ultimately suppressed liver gluconeogenesis in diabetic EODF mice. Although GR and KLF9 might mediate the metabolic benefits of EODF, the potential benefits of EODF might be limited by elevated serum GC levels in diabetic EODF mice. Overall, this study suggests that the metabolic benefits of EODF in improving glucose homeostasis are independent of CR, possibly because of the downstream effects of liver-specific GR degradation.

318. Metabolic Fluxes in the Renal Cortex Are Dysregulated In Vivo in Response to High-Fat Diet.

作者: Clinton M Hasenour.;Deveena R Banerjee.;Jamey D Young.
来源: Diabetes. 2024年73卷6期903-908页
Diabetes and obesity are risk factors for kidney disease. Whereas renal glucose production increases in diabetes, recent data suggest that gluconeogenic and oxidative capacity decline in kidney disease. Thus, metabolic dysregulation caused by diet-induced insulin resistance may sensitize the kidney for a loss in function. Here, we examined how diet-induced insulin resistance disrupts mitochondrial metabolic fluxes in the renal cortex in vivo. C57BL/6J mice were rendered insulin resistant through high-fat (HF) feeding; anaplerotic, cataplerotic, and oxidative metabolic fluxes in the cortex were quantified through 13C-isotope tracing during a hyperinsulinemic-euglycemic clamp. As expected, HF-fed mice exhibited increased body weight, gluconeogenesis, and systemic insulin resistance compared with chow-fed mice. Relative to the citric acid cycle, HF feeding increased metabolic flux through pyruvate carboxylation (anaplerosis) and phosphoenolpyruvate carboxykinase (cataplerosis) and decreased flux through the pyruvate dehydrogenase complex in the cortex. Furthermore, the relative flux from nonpyruvate sources of acetyl-CoA profoundly increased in the cortex of HF-fed mice, correlating with a marker of oxidative stress. The data demonstrate that HF feeding spares pyruvate from dehydrogenation at the expense of increasing cataplerosis, which may underpin renal gluconeogenesis during insulin resistance; the results also support the hypothesis that dysregulated oxidative metabolism in the kidney contributes to metabolic disease.

319. Genetic Evidence of Causal Relation Between Intestinal Glucose Absorption and Early Postprandial Glucose Response: A Mendelian Randomization Study.

作者: Simon Peschard.;Violeta Raverdy.;Pierre Bauvin.;Rebecca Goutchtat.;Veronique Touche.;Bruno Derudas.;Celine Gheeraert.;Julie Dubois-Chevalier.;Robert Caiazzo.;Gregory Baud.;Camille Marciniak.;Helene Verkindt.;Naima Oukhouya Daoud.;Carel W Le Roux.;Philippe Lefebvre.;Bart Staels.;Sophie Lestavel.;François Pattou.
来源: Diabetes. 2024年73卷6期983-992页
The postprandial glucose response is an independent risk factor for type 2 diabetes. Observationally, early glucose response after an oral glucose challenge has been linked to intestinal glucose absorption, largely influenced by the expression of sodium-glucose cotransporter 1 (SGLT1). This study uses Mendelian randomization (MR) to estimate the causal effect of intestinal SGLT1 expression on early glucose response. Involving 1,547 subjects with class II/III obesity from the Atlas Biologique de l'Obésité Sévère cohort, the study uses SGLT1 genotyping, oral glucose tolerance tests, and jejunal biopsies to measure SGLT1 expression. A loss-of-function SGLT1 haplotype serves as the instrumental variable, with intestinal SGLT1 expression as the exposure and the change in 30-min postload glycemia from fasting glycemia (Δ30 glucose) as the outcome. Results show that 12.8% of the 1,342 genotyped patients carried the SGLT1 loss-of-function haplotype, associated with a mean Δ30 glucose reduction of -0.41 mmol/L and a significant decrease in intestinal SGLT1 expression. The observational study links a 1-SD decrease in SGLT1 expression to a Δ30 glucose reduction of -0.097 mmol/L. MR analysis parallels these findings, associating a statistically significant reduction in genetically instrumented intestinal SGLT1 expression with a Δ30 glucose decrease of -0.353. In conclusion, the MR analysis provides genetic evidence that reducing intestinal SGLT1 expression causally lowers early postload glucose response. This finding has a potential translational impact on managing early glucose response to prevent or treat type 2 diabetes.

320. Risk of Diabetic Retinopathy According to Subtype of Type 2 Diabetes.

作者: Frederik N Pedersen.;Lonny Stokholm.;Nis Andersen.;Jens Andresen.;Toke Bek.;Javad Hajari.;Steffen Heegaard.;Kurt Højlund.;Ryo Kawasaki.;Caroline S Laugesen.;Sören Möller.;Katja Schielke.;Jens Steen Nielsen.;Jacob V Stidsen.;Reimar W Thomsen.;Benjamin Thinggaard.;Jakob Grauslund.
来源: Diabetes. 2024年73卷6期977-982页
Type 2 diabetes is a heterogeneous disease that can be subdivided on the basis of β-cell function and insulin sensitivity. We investigated the presence, incidence, and progression of diabetic retinopathy (DR) according to subtypes of type 2 diabetes. In a national cohort, we identified three subtypes of type 2 diabetes: classical, hyperinsulinemic, and insulinopenic type 2 diabetes, based on HOMA2 measurements. From the Danish Registry of Diabetic Retinopathy we extracted information on level of DR. We used several national health registries to link information on comorbidity, medications, and laboratory tests. We found individuals with hyperinsulinemic type 2 diabetes were less likely to have DR at entry date compared with those with classical type 2 diabetes, whereas individuals with insulinopenic type 2 diabetes were more likely to have DR. In multivariable Cox regression analysis, individuals with hyperinsulinemic type 2 diabetes had a decreased risk of both incidence and progression of DR compared to those with classical type 2 diabetes. We did not find any clear difference in risk of incident or progression of DR in individuals with insulinopenic compared to classical type 2 diabetes. These findings indicate that subcategorization of type 2 diabetes is important in evaluating the risk of DR.
共有 17498 条符合本次的查询结果, 用时 3.1004923 秒