301. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes.
The incretin effect denominates the phenomenon that oral glucose elicits a higher insulin response than does intravenous glucose. The two hormones responsible for the incretin effect, glucose-dependent insulinotropic hormone (GIP) and glucagon-like peptide-1 (GLP-1), are secreted after oral glucose loads and augment insulin secretion in response to hyperglycemia. In patients with type 2 diabetes, the incretin effect is reduced, and there is a moderate degree of GLP-1 hyposecretion. However, the insulinotropic response to GLP-1 is well maintained in type 2 diabetes. GIP is secreted normally or hypersecreted in type 2 diabetes; however, the responsiveness of the endocrine pancreas to GIP is greatly reduced. In approximately 50% of first-degree relatives of patients with type 2 diabetes, similarly reduced insulinotropic responses toward exogenous GIP can be observed, without significantly changed secretion of GIP or GLP-1 after oral glucose. This opens the possibility that a reduced responsiveness to GIP is an early step in the pathogenesis of type 2 diabetes. On the other hand, this provides a basis to use incretin hormones, especially GLP-1 and its derivatives, to replace a deficiency in incretin-mediated insulin secretion in the treatment of type 2 diabetes.
302. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice.
作者: Kohtaro Minami.;Takashi Miki.;Takashi Kadowaki.;Susumu Seino.
来源: Diabetes. 2004年53 Suppl 3卷S176-80页
ATP-sensitive K+ channels (KATP channels) are present in various tissues, including pancreatic beta-cells, heart, skeletal muscles, vascular smooth muscles, and brain. KATP channels are hetero-octameric proteins composed of inwardly rectifying K+ channel (Kir6.x) and sulfonylurea receptor (SUR) subunits. Different combinations of Kir6.x and SUR subunits comprise KATP channels with distinct electrophysiological and pharmacological properties. Recent studies of genetically engineered mice have provided insight into the physiological and pathophysiological roles of Kir6.x-containing KATP channels. Analysis of Kir6.2 null mice has shown that Kir6.2/SUR1 channels in pancreatic beta-cells and the hypothalamus are essential in glucose-induced insulin secretion and hypoglycemia-induced glucagon secretion, respectively, and that Kir6.2/SUR2 channels are involved in glucose uptake in skeletal muscles. Kir6.2-containing KATP channels in brain also are involved in protection from hypoxia-induced generalized seizure. In cardiovascular tissues, Kir6.1-containing KATP channels are involved in regulation of vascular tonus. In addition, the Kir6.1 null mouse is a model of Prinzmetal angina in humans. Our studies of Kir6.2 null and Kir6.1 null mice reveal that KATP channels are critical metabolic sensors in acute metabolic changes, including hyperglycemia, hypoglycemia, ischemia, and hypoxia.
303. Five stages of evolving beta-cell dysfunction during progression to diabetes.
This article proposes five stages in the progression of diabetes, each of which is characterized by different changes in beta-cell mass, phenotype, and function. Stage 1 is compensation: insulin secretion increases to maintain normoglycemia in the face of insulin resistance and/or decreasing beta-cell mass. This stage is characterized by maintenance of differentiated function with intact acute glucose-stimulated insulin secretion (GSIS). Stage 2 occurs when glucose levels start to rise, reaching approximately 5.0-6.5 mmol/l; this is a stable state of beta-cell adaptation with loss of beta-cell mass and disruption of function as evidenced by diminished GSIS and beta-cell dedifferentiation. Stage 3 is a transient unstable period of early decompensation in which glucose levels rise relatively rapidly to the frank diabetes of stage 4, which is characterized as stable decompensation with more severe beta-cell dedifferentiation. Finally, stage 5 is characterized by severe decompensation representing a profound reduction in beta-cell mass with progression to ketosis. Movement across stages 1-4 can be in either direction. For example, individuals with treated type 2 diabetes can move from stage 4 to stage 1 or stage 2. For type 1 diabetes, as remission develops, progression from stage 4 to stage 2 is typically found. Delineation of these stages provides insight into the pathophysiology of both progression and remission of diabetes.
304. The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium.
作者: Ulrich Quast.;Damian Stephan.;Susanne Bieger.;Ulrich Russ.
来源: Diabetes. 2004年53 Suppl 3卷S156-64页
Insulin secretagogues (sulfonylureas and glinides) increase insulin secretion by closing the ATP-sensitive K+ channel (KATP channel) in the pancreatic beta-cell membrane. KATP channels subserve important functions also in the heart. First, KATP channels in coronary myocytes contribute to the control of coronary blood flow at rest and in hypoxia. Second, KATP channels in the sarcolemma of cardiomyocytes (sarcKATP channels) are required for adaptation of the heart to stress. In addition, the opening of sarcKATP channels and of KATP channels in the inner membrane of mitochondria (mitoKATP channels) plays a central role in ischemic preconditioning. Opening of sarcKATP channels also underlies the ST-segment elevation of the electrocardiogram, the primary diagnostic tool for initiation of lysis therapy in acute myocardial infarction. Therefore, inhibition of cardiovascular KATP channels by insulin secretagogues is considered to increase cardiovascular risk. Electrophysiological experiments have shown that the secretagogues differ in their selectivity for the pancreatic over the cardiovascular KATP channels, being either highly selective (approximately 1,000x; short sulfonylureas such as nateglinide and mitiglinide), moderately selective (10-20x; long sulfonylureas such as glibenclamide [glyburide]), or essentially nonselective (<2x; repaglinide). New binding studies presented here give broadly similar results. In clinical studies, these differences are not yet taken into account. The hypothesis that the in vitro selectivity of the insulin secretagogues is of importance for the cardiovascular outcome of diabetic patients with coronary artery disease needs to be tested.
305. Kinetics-effect relations of insulin-releasing drugs in patients with type 2 diabetes: brief overview.
Sulfonylureas and glinides have similar mechanisms of action but differ in receptor affinity and binding sites and in absorption and elimination rates. This promotes differences in potency, rate of onset, and duration of action. While prominent in single-dose studies, these differences have less importance during long-term sulfonylurea treatment: at ordinary dosages, rapid- and short-acting (glipizide) and slow- and long-acting (glyburide) sulfonylureas maintained continuously effective plasma levels and similar 24-h glucose control. Moreover, there was no difference in patient outcome between the first-generation sulfonylurea chlorpropamide and the second-generation glyburide in the U.K. Prospective Diabetes Study. However, the risk of long-lasting and hence dangerous hypoglycemia is higher with these two long-acting sulfonylureas. Conversely, this risk should be low with the short-acting glinides, but seemingly at the expense of less effective glucose control. The most important kinetics-effect relations are that hyperglycemia delays sulfonylurea absorption and that the sulfonylurea dose-response curve is bell shaped; continuous sulfonylurea exposure over a certain level (e.g., 10 mg glipizide) impairs rather than improves insulin and glucose responses to sulfonylurea (downregulation). Accordingly, a vicious circle may be established: unrelenting hyperglycemia may promote sulfonylurea dose increase, which increases hyperglycemia, promoting further dose increase and eventually therapeutic failure.
306. Desensitization of insulin secretion by depolarizing insulin secretagogues.
作者: Ingo Rustenbeck.;Antje Wienbergen.;Claudia Bleck.;Anne Jörns.
来源: Diabetes. 2004年53 Suppl 3卷S140-50页
Prolonged stimulation of insulin secretion by depolarization and Ca2+ influx regularly leads to a reversible state of decreased secretory responsiveness to nutrient and nonnutrient stimuli. This state is termed "desensitization." The onset of desensitization may occur within 1 h of exposure to depolarizing stimuli. Desensitization by exposure to sulfonylureas, imidazolines, or quinine produces a marked cross-desensitization against other ATP-sensitive K+ channel (KATP channel)-blocking secretagogues. However, desensitized beta-cells do not necessarily show changes in KATP channel activity or Ca2+ handling. Care has to be taken to distinguish desensitization-induced changes in signaling from effects due to the persisting presence of secretagogues. The desensitization by depolarizing secretagogues is mostly accompanied by a reduced content of immunoreactive insulin and a marked reduction of secretory granules in the beta-cells. In vitro recovery from a desensitization by the imidazoline efaroxan was nearly complete after 4 h. At this time point the depletion of the granule content was partially reversed. Apparently, recovery from desensitization affects the whole lifespan of a granule from biogenesis to exocytosis. There is, however, no direct relation between the beta-cell granule content and the secretory responsiveness. Even though a prolonged exposure of isolated islets to depolarizing secretagogues is often associated with the occurrence of ultrastructural damage to beta-cells, we could not find a cogent link between depolarization and Ca2+ influx and apoptotic or necrotic beta-cell death.
307. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux.
Closure of ATP-sensitive K+ channels (KATP channels) is a key step in glucose-stimulated insulin secretion. The precise mechanism(s) by which glucose metabolism regulates KATP channel activity, however, remains controversial. It is widely believed that the principal determinants are the intracellular concentrations of the metabolic ligands, ATP and ADP, which have opposing actions on KATP channels, with ATP closing and MgADP opening the channel. However, the sensitivity of the channel to these nucleotides in the intact cell, and their relative contribution to the regulation of channel activity, remains unclear. The precise role of phosphoinositides and long-chain acyl-CoA esters, which are capable of modulating the channel ATP sensitivity, is also uncertain. Furthermore, it is still a matter of debate whether it is changes in the concentration of ATP, of MgADP, or of other agents, which couples glucose metabolism to KATP channel activity. In this article, we review current knowledge of the metabolic regulation of the KATP channel and provide evidence that MgADP (or MgATP hydrolysis), acting at the regulatory subunit of the channel, shifts the ATP concentration-response curve into a range in which the channel pore can respond to dynamic changes in cytosolic ATP. This metabolic pas de deux orchestrates the pivotal role of ATP in metabolic regulation of the KATP channel.
308. Toward linking structure with function in ATP-sensitive K+ channels.
作者: Joseph Bryan.;Wanda H Vila-Carriles.;Guiling Zhao.;Audrey P Babenko.;Lydia Aguilar-Bryan.
来源: Diabetes. 2004年53 Suppl 3卷S104-12页
Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.
309. Molecular mechanisms of insulin resistance that impact cardiovascular biology.
Insulin resistance is concomitant with type 2 diabetes, obesity, hypertension, and other features of the metabolic syndrome. Because insulin resistance is associated with cardiovascular disease, both scientists and physicians have taken great interest in this disorder. Insulin resistance is associated with compensatory hyperinsulinemia, but individual contributions of either of these two conditions remain incompletely understood and a subject of intense investigation. One possibility is that in an attempt to overcome the inhibition within the metabolic insulin-signaling pathway, hyperinsulinemia may continue to stimulate the mitogenic insulin-signaling pathway, thus exerting its detrimental influence. Here we discuss some of the effects of insulin resistance and mechanisms of potentially detrimental influence of hyperinsulinemia in the presence of metabolic insulin resistance.
310. Neuronal glucosensing: what do we know after 50 years?
作者: Barry E Levin.;Vanessa H Routh.;Ling Kang.;Nicole M Sanders.;Ambrose A Dunn-Meynell.
来源: Diabetes. 2004年53卷10期2521-8页
Glucosensing neurons are specialized cells that use glucose as a signaling molecule to alter their action potential frequency in response to variations in ambient glucose levels. Glucokinase (GK) appears to be the primary regulator of most neuronal glucosensing, but other regulators almost certainly exist. Glucose-excited neurons increase their activity when glucose levels rise, and most use GK and an ATP-sensitive K(+) channel as the ultimate effector of glucose-induced signaling. Glucose-inhibited (GI) neurons increase their activity at low glucose levels. Although many use GK, it is unclear what the final pathway of GI neuronal glucosensing is. Glucosensing neurons are located in brain sites and respond to and integrate a variety of hormonal, metabolic, transmitter, and peptide signals involved in the regulation of energy homeostasis and other biological functions. Although it is still uncertain whether daily fluctuations in blood glucose play a specific regulatory role in these physiological functions, it is clear that large decreases in glucose availability stimulate food intake and counterregulatory responses that restore glucose levels to sustain cerebral function. Finally, glucosensing is altered in obesity and after recurrent bouts of hypoglycemia, and this altered sensing may contribute to the adverse outcomes of these conditions. Thus, although much is known, much remains to be learned about the physiological function of brain glucosensing neurons.
311. Therapeutic strategies based on glucagon-like peptide 1.
Glucagon-like peptide (GLP)-1 is an incretin hormone with potent glucose-dependent insulinotropic and glucagonostatic actions, trophic effects on the pancreatic beta-cells, and inhibitory effects on gastrointestinal secretion and motility, which combine to lower plasma glucose and reduce glycemic excursions. Furthermore, via its ability to enhance satiety, GLP-1 reduces food intake, thereby limiting weight gain, and may even cause weight loss. Taken together, these actions give GLP-1 a unique profile, considered highly desirable for an antidiabetic agent, particularly since the glucose dependency of its antihyperglycemic effects should minimize any risk of severe hypoglycemia. However, its pharmacokinetic/pharmacodynamic profile is such that native GLP-1 is not therapeutically useful. Thus, while GLP-1 is most effective when administered continuously, single subcutaneous injections have short-lasting effects. GLP-1 is highly susceptible to enzymatic degradation in vivo, and cleavage by dipeptidyl peptidase IV (DPP-IV) is probably the most relevant, since this occurs rapidly and generates a noninsulinotropic metabolite. Strategies for harnessing GLP-1's therapeutic potential, based on an understanding of factors influencing its metabolic stability and pharmacokinetic/pharmacodynamic profile, have therefore been the focus of intense research in both academia and the pharmaceutical industry. Such strategies include DPP-IV-resistant GLP-1 analogs and selective enzyme inhibitors to prevent in vivo degradation of the peptide.
312. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells?
Glucose-dependent insulin secretion (GDIS), reactive oxygen species (ROS) production, and oxidative stress in pancreatic beta-cells may be tightly linked processes. Here we suggest that the same pathways used in the activation of GDIS (increased glycolytic flux, ATP-to-ADP ratio, and intracellular Ca2+ concentration) can dramatically enhance ROS production and manifestations of oxidative stress and, possibly, apoptosis. The increase in ROS production and oxidative stress produced by GDIS activation itself suggests a dual role for metabolic insulin secretagogues, as an initial sharp increase in insulin secretion rate can be accompanied by progressive beta-cell injury. We propose that therapeutic strategies targeting enhancement of GDIS should be carefully considered in light of possible loss of beta-cell function and mass.
313. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes.
Recent evidence points toward decreased oxidative capacity and mitochondrial aberrations as a major contributor to the development of insulin resistance and type 2 diabetes. In this article we will provide an integrative view on the interrelation between decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations in type 2 diabetes. Type 2 diabetes is characterized by disturbances in fatty acid metabolism and is accompanied by accumulation of fatty acids in nonadipose tissues. In metabolically active tissues, such as skeletal muscle, fatty acids are prone to so-called oxidative damage. In addition to producing energy, mitochondria are also a major source of reactive oxygen species, which can lead to lipid peroxidation. In particular, the mitochondrial matrix, which contains DNA, RNA, and numerous enzymes necessary for substrate oxidation, is sensitive to peroxide-induced oxidative damage and needs to be protected against the formation and accumulation of lipids and lipid peroxides. Recent evidence reports that mitochondrial uncoupling is involved in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Disturbances in this protection mechanism can contribute to the development of type 2 diabetes.
315. Transcriptional control of apolipoprotein A-I gene expression in diabetes.
Cardiovascular disease continues to be the leading cause of mortality in diabetes. One of the factors contributing to the increased risk is the high prevalence rate of low plasma concentrations of HDL cholesterol. Multiple potential mechanisms account for the cardioprotective effects of HDL and its main protein apolipoprotein (apo) A-I. The reduced plasma concentrations of HDL could be the result of increased fractional clearance of HDL and reduced expression of apo A-I. In animal models of diabetes and in cell cultures treated with high concentrations of glucose, apo A-I expression is reduced. In this review we will discuss the alterations in transcriptional control of apo A-I in diabetes. The role of select nutritional and hormonal alterations commonly found in diabetes will be reviewed. Specifically, we will review the literature on the effect of hyperglycemia, hypoinsulinemia, and ketoacidosis, as well as the role of various mediators of insulin resistance, such as fatty acids, cytokines, and prostanoids, on apo A-I promoter activity. Identifying the mechanisms that modulate apo A-I gene expression will aid in the new development of therapeutic agents that increase plasma apo A-I and HDL concentrations.
316. Islet complex lipids: involvement in the actions of group VIA calcium-independent phospholipase A(2) in beta-cells.
作者: Sasanka Ramanadham.;Haowei Song.;Shunzhong Bao.;Fong-Fu Hsu.;Sheng Zhang.;Zhongmin Ma.;Chun Jin.;John Turk.
来源: Diabetes. 2004年53 Suppl 1卷0 1期S179-85页
The beta-isoform of group VIA calcium-independent phospholipase A(2) (iPLA(2)beta) does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate. Several potential functions have been proposed for iPLA(2)beta. Our studies indicate that iPLA(2)beta is expressed in beta-cells and participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. If iPLA(2)beta plays a signaling role in glucose-stimulated insulin secretion, then conditions that impair iPLA(2)beta functions might contribute to the diminished capacity of beta-cells to secrete insulin in response to glucose, which is a prominent characteristic of type 2 diabetes. Our recent studies suggest that iPLA(2)beta might also participate in beta-cell proliferation and apoptosis and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the iPLA(2)beta protein level reveals that beta-cells express multiple isoforms of the enzyme, and our studies involve the hypothesis that different isoforms have different functions.
317. Chronic effects of fatty acids on pancreatic beta-cell function: new insights from functional genomics.
作者: Trevor J Biden.;Darren Robinson.;Damien Cordery.;William E Hughes.;Anna K Busch.
来源: Diabetes. 2004年53 Suppl 1卷S159-65页
Type 2 diabetes can be viewed as a failure of the pancreatic beta-cell to compensate for peripheral insulin resistance with enhanced insulin secretion. This failure is explained by both a relative loss of beta-cell mass as well as secretory defects that include enhanced basal secretion and a selective loss of sensitivity to glucose. These features are reproduced by chronic exposure of beta-cells to fatty acids (FAs), suggesting that hyperlipidemia might contribute to decompensation. Using MIN6 cells pretreated for 48 h with oleate or palmitate, we have previously defined alterations in global gene expression by transcript profiling and described additional secretory changes to those already established (Busch A-K, Cordery D, Denyer G, Biden TJ: Diabetes 51:977-987, 2002). In contrast to a modest decoupling of glucose-stimulated insulin secretion, FA pretreatment markedly enhanced the secretory response to an acute subsequent challenge with FAs. We propose that this apparent switch in sensitivity from glucose to FAs would be an appropriate response to hyperlipidemia in vivo and thus plays a positive role in beta-cell compensation for insulin resistance. Altered expression of dozens of genes could contribute to this switch, and allelic variations in any of these genes could (to varying degrees) impair beta-cell compensation and thus contribute to conditions ranging from impaired glucose tolerance to frank diabetes.
318. Leptin effects on pancreatic beta-cell gene expression and function.
The hormone leptin is secreted from white adipocytes, and serum levels of leptin correlate with adipose tissue mass. Leptin was first described to act on the satiety center in the hypothalamus through specific receptors (leptin receptor [ObR]) to restrict food intake and enhance energy expenditure. Important peripheral actions of leptin involve inhibition of insulin biosynthesis and secretion in pancreatic beta-cells. In turn, insulin stimulates leptin secretion from adipose tissue, establishing a hormonal regulatory feedback loop-the so-called "adipo-insular axis." Multiple signal transduction pathways are involved in leptin signaling in pancreatic beta-cells. We have identified the proinsulin gene and protein phosphatase 1 gene as leptin repressed genes and the gene for the suppressor of cytokine signaling 3 protein as a leptin-induced gene in pancreatic beta-cells. The molecular effects of leptin culminate to restrict insulin secretion and biosynthesis to adapt glucose homeostasis to the amount of body fat. In most overweight individuals, however, physiological regulation of body weight by leptin seems to be disturbed, representing "leptin resistance." This leptin resistance at the level of the pancreatic beta-cell may contribute to dysregulation of the adipo-insular axis and promote the development of hyperinsulinemia and manifest type 2 diabetes in overweight patients.
319. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism.
Hormones produced by adipose tissue play a critical role in the regulation of energy intake, energy expenditure, and lipid and carbohydrate metabolism. This review will address the biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature. The main biological role of leptin appears to be adaptation to reduced energy availability rather than prevention of obesity. In addition to the well-known consequences of absolute leptin deficiency, subjects with heterozygous leptin gene mutations have low circulating leptin levels and increased body adiposity. Leptin treatment dramatically improves metabolic abnormalities (insulin resistance and hyperlipidemia) in patients with relative leptin deficiency due to lipoatrophy. Leptin production is primarily regulated by insulin-induced changes of adipocyte metabolism. Dietary fat and fructose, which do not increase insulin secretion, lead to reduced leptin production, suggesting a mechanism for high-fat/high-sugar diets to increase energy intake and weight gain. ASP increases the efficiency of triacylglycerol synthesis in adipocytes leading to enhanced postprandial lipid clearance. In mice, ASP deficiency results in reduced body fat, obesity resistance, and improved insulin sensitivity. Adiponectin production is stimulated by thiazolidinedione agonists of peroxisome proliferator-activated receptor-gamma and may contribute to increased insulin sensitivity. Adiponectin and leptin cotreatment normalizes insulin action in lipoatrophic insulin-resistant animals. These effects may be mediated by AMP kinase-induced fat oxidation, leading to reduced intramyocellular and liver triglyceride content. The production of all three hormones is influenced by nutritional status. These hormones, the pathways controlling their production, and their receptors are promising targets for managing obesity, hyperlipidemia, and insulin resistance.
320. Uncoupling protein 2 and islet function.
作者: Catherine B Chan.;Monique C Saleh.;Vasilij Koshkin.;Michael B Wheeler.
来源: Diabetes. 2004年53 Suppl 1卷S136-42页
Stressors such as chronic hyperglycemia or hyperlipidemia may lead to insufficient insulin secretion in susceptible individuals, contributing to type 2 diabetes. The molecules mediating this effect are just beginning to be identified. Uncoupling protein (UCP)-2 may be one such negative modulator of insulin secretion. Accumulating evidence shows that beta-cell UCP2 expression is upregulated by glucolipotoxic conditions and that increased activity of UCP2 decreases insulin secretion. Mitochondrial superoxide has been identified as a posttranslational regulator of UCP2 activity in islets; thus, UCP2 may provide protection to beta-cells at one level while simultaneously having detrimental effects on insulin secretion. Interestingly, the latter appears to be the dominant outcome, because UCP2 knockout mice display an increased beta-cell mass and retained insulin secretion capacity in the face of glucolipotoxicity.
|