当前位置: 首页 >> 检索结果
共有 8495 条符合本次的查询结果, 用时 5.8221367 秒

261. Small molecules targeting microRNAs: new opportunities and challenges in precision cancer therapy.

作者: Ancuta Jurj.;Beatrice Fontana.;Gabriele Varani.;George A Calin.
来源: Trends Cancer. 2024年10卷9期809-824页
Noncoding RNAs, especially miRNAs, play a pivotal role in cancer initiation and metastasis, underscoring their susceptibility to precise modulation via small molecule inhibitors. This review examines the innovative strategy of targeting oncogenic miRNAs with small drug-like molecules, an approach that can reshape the cancer treatment landscape. We review the current understanding of the multifaceted roles of miRNAs in oncogenesis, highlighting emerging therapeutic paradigms that have the potential to expand cancer treatment options. As research on small molecule inhibitors of miRNA is still in its early stages, ongoing investigative efforts and the development of new technologies and chemical matter are essential to fulfill the significant potential of this innovative approach to cancer treatment.

262. A systematic review on the impact of micro-nanoplastics on human health: Potential modulation of epigenetic mechanisms and identification of biomarkers.

作者: Darshini Subramanian.;Gopinath Ponnusamy Manogaran.;Dhanasekaran Dharmadurai.
来源: Chemosphere. 2024年363卷142986页
Epigenetic-mediated modifications, induced by adverse environmental conditions, significantly alter an organism's physiological mechanisms. Even after elimination of the stimulus, these epigenetic modifications can be inherited through mitosis, thereby triggering transgenerational epigenetics. Plastics, with their versatile properties, are indispensable in various aspects of daily life. However, due to mismanagement, plastics have become so ubiquitous in the environment that no ecosystem on Earth is free from micro-nanoplastics (MNPs). This situation has raised profound concerns regarding their potential impact on human health. Recently, both in vivo animal and in vitro human cellular models have shown the potential to identify the harmful effects of MNPs at the genome level. The emerging epigenetic impact of MNP exposure is characterized by short-term alterations in chromatin remodelling and miRNA modulation. However, to understand long-term epigenetic changes and potential transgenerational effects, substantial and more environmentally realistic exposure studies are needed. In the current review, the intricate epigenetic responses, including the NHL-2-EKL-1, NDK-1-KSR1/2, and WRT-3-ASP-2 cascades, wnt-signalling, and TGF- β signalling, established in model organisms such as C. elegans, mice, and human cell lines upon exposure to MNPs, were systematically examined. This comprehensive analysis aimed to predict human pathways by identifying human homologs using databases and algorithms. We are confident that various parallel miRNA pathways, specifically the KSR-ERK-MAPK pathway, FOXO-Insulin cascade, and GPX3-HIF-α in humans, may be influenced by MNP exposure. This influence may lead to disruptions in key metabolic and immune pathways, including glucose balance, apoptosis, cell proliferation, and angiogenesis. Therefore, we believe that these genes and pathways could serve as potential biomarkers for future studies. Additionally, this review emphasizes the origin, dispersion, and distribution of plastics, providing valuable insights into the complex relationship between plastics and human health while elaborating on the epigenetic impacts.

263. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review).

作者: Shenghao Li.;Liyuan Hao.;Na Li.;Xiaoyu Hu.;Huimin Yan.;Erhei Dai.;Xinli Shi.
来源: Int J Oncol. 2024年65卷3期
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.

264. lncRNAs: New players of cancer drug resistance via targeting ABC transporters.

作者: Mohammad Ebrahimnezhad.;Sanaz Hassanzadeh Asl.;Maede Rezaie.;Mehran Molavand.;Bahman Yousefi.;Maryam Majidinia.
来源: IUBMB Life. 2024年76卷11期883-921页
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.

265. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation.

作者: Cheng Zhao.;Hui Jin.;Yu Lei.;Qilin Li.;Ying Zhang.;Qianjin Lu.
来源: Sci Total Environ. 2024年950卷175042页
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.

266. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma.

作者: William J H Davis.;Catherine J Drummond.;Sarah Diermeier.;Glen Reid.
来源: Genes (Basel). 2024年15卷7期
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.

267. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors.

作者: Fengli Li.;Wenjin Li.
来源: Biomolecules. 2024年14卷7期
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.

268. Epigenetic Mechanisms of Aluminum-Induced Neurotoxicity and Alzheimer's Disease: A Focus on Non-Coding RNAs.

作者: Michael Aschner.;Anatoly V Skalny.;Abel Santamaria.;Joao B T Rocha.;Borhan Mansouri.;Yousef Tizabi.;Roberto Madeddu.;Rongzu Lu.;Eunsook Lee.;Alexey A Tinkov.
来源: Neurochem Res. 2024年49卷11期2988-3005页
Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid β (Aβ) production through up-regulation of Aβ precursor protein (APP) and β secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.

269. Biomarker identification of medullary thyroid carcinoma from gene expression profiles considering without-treatment and with-treatment studies-A bioinformatics approach.

作者: Tamizhini Loganathan.;C George Priya Doss.
来源: Adv Protein Chem Struct Biol. 2024年142卷367-396页
Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor derived from parafollicular thyroid gland cells. In both hereditary MTC and sporadic forms, genetic changes result in fundamental changes, and prognosis and mutational status are highly correlated. In this work, biomarker genes (DEGs and DEmiRNAs) for MTC will be computationally identified in order to help in their diagnosis and treatment. The gene expression profiles of two different types of studies, namely without-treatment (wo-trt) and with-treatment (w-trt), are considered for discovering biomarkers. The datasets were retrieved from the GEO database, and the DEGs and DEmiRNAs were analyzed using ExpressAnalyst and GEO2R. The functional analysis of DEGs and DEmiRNAs was performed, and most of the pathways enriched related to thyroid oncological pathways such as MAPK pathway,mTOR pathway, and PI3K-AKT Signaling pathway. Through this conclusion, the RET gene was upregulated wo-trt; the dinaciclib treatment RET gene was down-regulated computationally. To optimize the therapeutic targeting of RET, greater research into the mechanisms regulating RET transcription is necessary.

270. Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis.

作者: Anil Kumar.;Bakr Ahmed.;Indu Pal Kaur.;Lekha Saha.
来源: Int J Biol Macromol. 2024年277卷Pt 1期133984页
Small interfering RNA (siRNA) holds promise as a therapeutic approach for various diseases, yet challenges persist in achieving efficient delivery, biodistribution, and minimizing off-target effects. Lipidic nanoformulations are being developed to address these hurdles, but the optimal dose for preclinical investigations remains unclear. This systematic review and meta-analysis aims to determine the optimal dose of nanoformulated siRNA and explore factors influencing dose and biodistribution, informing future research in this field. A comprehensive search across four electronic databases identified 25 potential studies, with 15 selected for meta-analysis after screening. Quality assessment was conducted using SYRCLE's risk of bias tool modified for animal studies based on research question. Study found an average siRNA dose of 1.513 ± 0.377 mg/kg with mean downregulation of 65.79 % achieved, with siRNA-LNPs mainly accumulating in the liver. While individual factors showed no significant correlation, a positive association between dose and downregulation was observed, alongside other influencing factors. Extrapolating intravenous doses to potential oral doses, we suggest an initial oral dose range of 1.5 to 8 mg/kg, considering siRNA-LNPs bioavailability. These findings contribute to advancing RNA interference research and encourage further exploration of siRNA-based treatments in personalized medicine.

271. Inhibitors of the transactivation domain of androgen receptor as a therapy for prostate cancer.

作者: Jon K Obst.;Amy H Tien.;Josie C Setiawan.;Lauren F Deneault.;Marianne D Sadar.
来源: Steroids. 2024年210卷109482页
The androgen receptor (AR) is a modular transcription factor which functions as a master regulator of gene expression. AR protein is composed of three functional domains; the ligand-binding domain (LBD); DNA-binding domain (DBD); and the intrinsically disordered N-terminal transactivation domain (TAD). AR is transactivated upon binding to the male sex hormone testosterone and other androgens. While the AR may tolerate loss of its LBD, the TAD contains activation function-1 (AF-1) that is essential for all AR transcriptional activity. AR is frequently over-expressed in most prostate cancer. Currently, androgen deprivation therapy (ADT) in the form of surgical or chemical castration remains the standard of care for patients with high risk localized disease, advanced and metastatic disease, and those patients that experience biochemical relapse following definitive primary treatment. Patients with recurrent disease that receive ADT will ultimately progress to lethal metastatic castration-resistant prostate cancer. In addition to ADT not providing a cure, it is associated with numerous adverse effects including cardiovascular disease, osteoporosis and sexual dysfunction. Recently there has been a renewed interest in investigating the possibility of using antiandrogens which competitively bind the AR-LBD without ADT for patients with hormone sensitive, non-metastatic prostate cancer. Here we describe a class of compounds termed AR transactivation domain inhibitors (ARTADI) and their mechanism of action. These compounds bind to the AR-TAD to inhibit AR transcriptional activity in the absence and presence of androgens. Thus these inhibitors may have utility in preventing prostate cancer growth in the non-castrate setting.

272. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods.

作者: Eren Ozcagli.;Barbara Kubickova.;Miriam N Jacobs.
来源: Front Endocrinol (Lausanne). 2024年15卷1401120页
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.

273. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review.

作者: Luiz Gustavo de Almeida Chuffa.;Fábio Rodrigues Ferreira Seiva.;Henrique S Silveira.;Roberta Carvalho Cesário.;Karolina da Silva Tonon.;Vinicius Augusto Simão.;Debora Aparecida P C Zuccari.;Russel J Reiter.
来源: J Cell Physiol. 2024年239卷11期e31383页
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.

274. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises.

作者: Sushma Panduga.;Sampara Vasishta.;Ramamoorthy Subramani.;Sthevaan Vincent.;Srinivas Mutalik.;Manjunath B Joshi.
来源: Eur J Pharmacol. 2024年980卷176827页
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.

275. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders.

作者: Sairaj Satarker.;Joel Wilson.;Kiran Kumar Kolathur.;Jayesh Mudgal.;Shaila A Lewis.;Devinder Arora.;Madhavan Nampoothiri.
来源: Eur J Pharmacol. 2024年979卷176823页
Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.

276. ADAR1: from basic mechanisms to inhibitors.

作者: Jan Rehwinkel.;Parinaz Mehdipour.
来源: Trends Cell Biol. 2025年35卷1期59-73页
Adenosine deaminase acting on RNA 1 (ADAR1) converts adenosine to inosine in double-stranded RNA (dsRNA) molecules, a process known as A-to-I editing. ADAR1 deficiency in humans and mice results in profound inflammatory diseases characterised by the spontaneous induction of innate immunity. In cells lacking ADAR1, unedited RNAs activate RNA sensors. These include melanoma differentiation-associated gene 5 (MDA5) that induces the expression of cytokines, particularly type I interferons (IFNs), protein kinase R (PKR), oligoadenylate synthase (OAS), and Z-DNA/RNA binding protein 1 (ZBP1). Immunogenic RNAs 'defused' by ADAR1 may include transcripts from repetitive elements and other long duplex RNAs. Here, we review these recent fundamental discoveries and discuss implications for human diseases. Some tumours depend on ADAR1 to escape immune surveillance, opening the possibility of unleashing anticancer therapies with ADAR1 inhibitors.

277. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target.

作者: Lucette Z Simbilyabo.;Liting Yang.;Jie Wen.;Zhixiong Liu.
来源: CNS Neurosci Ther. 2024年30卷7期e14839页
The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions.

278. The effects of the combination therapy of chemotherapy drugs on the fluctuations of genes involved in the TLR signaling pathway in glioblastoma multiforme therapy.

作者: Seyedeh Elham Norollahi.;Shahrokh Yousefzadeh-Chabok.;Bahman Yousefi.;Fatemeh Nejatifar.;Ali Rashidy-Pour.;Ali Akbar Samadani.
来源: Biomed Pharmacother. 2024年177卷117137页
One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance. Importantly, the primary therapeutic hurdles in GBM are the development of angiogenesis and the blood-brain barrier (BBB), which keeps medications from getting to the tumor. This malignancy can be controlled if the drug's passage through the BBB and the VEGF (vascular endothelial growth factor), which promotes angiogenesis, are inhibited. In this way, the effect of combination therapy on the genes of different main signaling pathways like TLRs may be indicated as an impressive therapeutic strategy for treating GBM. This article aims to discuss the effects of chemotherapeutic drugs on the expression of various genes and associated translational factors involved in the TLR signaling pathway.

279. HOXA9 Regulome and Pharmacological Interventions in Leukemia.

作者: Sajesan Aryal.;Rui Lu.
来源: Adv Exp Med Biol. 2024年1459卷405-430页
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.

280. MYB as a Critical Transcription Factor and Potential Therapeutic Target in AML.

作者: Mary Louise Clarke.;Odd Stokke Gabrielsen.;Jon Frampton.
来源: Adv Exp Med Biol. 2024年1459卷341-358页
Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.
共有 8495 条符合本次的查询结果, 用时 5.8221367 秒