223. Central role for interleukin-2 in type 1 diabetes.
作者: Maigan A Hulme.;Clive H Wasserfall.;Mark A Atkinson.;Todd M Brusko.
来源: Diabetes. 2012年61卷1期14-22页
Type 1 diabetes presents clinically with overt hyperglycemia resulting from progressive immune-mediated destruction of pancreatic β-cells and associated metabolic dysfunction. Combined genetic and immunological studies now highlight deficiencies in both the interleukin-2 (IL-2) receptor and its downstream signaling pathway as a central defect in the pathogenesis of type 1 diabetes. Prior intervention studies in animal models indicate that augmenting IL-2 signaling can prevent and reverse disease, with protection conferred primarily by restoration of regulatory T-cell (Treg) function. In this article, we will focus on studies of type 1 diabetes noting deficient IL-2 signaling and build what we believe forms the molecular framework for their contribution to the disease. This activity results in the identification of a series of potentially novel therapeutic targets that could restore proper immune regulation in type 1 diabetes by augmenting the IL-2 pathway.
234. Islet transplantation a decade later and strategies for filling a half-full glass.
Alloislet transplantation for the treatment of type 1 diabetes enjoyed highly favorable status in the first half of the last decade but declined in favor during the second half. In this Perspective, I will briefly review the literature published in this area from 2000 to 2010 for the purposes of extracting lessons we have learned, considering whether the procedure should be deemed a partial success or a partial failure, and offering several strategies to improve alloislet transplantation outcomes in the future. In the end, I hope to strike a positive note about where this procedure is going, and how it will be applied to establish insulin independence in patients with type 1 diabetes.
240. Can we learn from viruses how to prevent type 1 diabetes?: the role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies.
We will take a journey from basic pathogenetic mechanisms elicited by viral infections that play a role in the development of type 1 diabetes to clinical interventions, where we will discuss novel combination therapies. The role of viral infections in the development of type 1 diabetes is a rather interesting topic because in experimental models viruses appear capable of both accelerating as well as decelerating the immunological processes leading to type 1 diabetes. Consequently, I will discuss some of the underlying mechanisms for each situation and consider methods to investigate the proposed dichotomy for the involvement of viruses in human type 1 diabetes. Prevention of type 1 diabetes by infection supports the so-called "hygiene hypothesis." Interestingly, viruses invoke mechanisms that need to be exploited by novel combinatorial immune-based interventions, the first one being the elimination of autoaggressive T-cells attacking the beta-cells, ultimately leading to their immediate but temporally limited amelioration. The other is the invigoration of regulatory T-cells (Tregs), which can mediate long-term tolerance to beta-cell proteins in the pancreatic islets and draining lymph nodes. In combination, these two immune elements have the potential to permanently stop type 1 diabetes. It is my belief that only combination therapies will enable the permanent prevention and curing of type 1 diabetes.
|