201. Evaluating the predictive power of combined gene expression dynamics from single cells on antibiotic survival.
Heteroresistance and persistence are examples of mechanisms that can allow otherwise drug-susceptible bacteria to survive and resume growth after antibiotic exposure. These temporary forms of antibiotic tolerance can be caused by the upregulation of stress response genes or a decrease in cell growth rate. However, it is not clear how the expression of multiple genes contributes to tolerance phenotypes. Using fluorescent reporters for stress-related genes, we conducted real-time measurements of expression prior to, during, and after antibiotic exposure. We first identified relationships between growth rate and reporter levels based on auto- and cross-correlation analysis, revealing consistent patterns where changes in growth rate were anticorrelated with fluorescence following a delay. We then used pairs of stress gene reporters and time-lapse fluorescence microscopy to measure the growth rate and reporter levels in cells that survived or died following antibiotic exposure. Using these data, we asked whether combined information about reporter expression and growth rate could improve our ability to predict whether a cell would survive or die following antibiotic exposure. We developed a Bayesian inference model to predict how the combination of dual reporter expression levels and growth rate impacts ciprofloxacin survival in Escherichia coli. We found clear evidence of the impact of growth rate and gadX promoter activity on survival. Unexpectedly, our results also revealed examples where additional information from multiple genes decreased prediction accuracy, highlighting an important and underappreciated effect that can occur when integrating data from multiple simultaneous measurements.IMPORTANCETransient increases in bacterial antibiotic tolerance can result in treatment failure despite an infection initially presenting as susceptible, presenting a significant challenge in antibiotic therapy. This phenomenon can also provide a window of opportunity for bacteria to acquire permanent genetic resistance mutations. Although understanding the underlying mechanisms of these antibiotic tolerance phenotypes is crucial for developing effective approaches to treatment, current approaches for studying these transient phenotypes have limitations. Here, we use fluorescent reporters to monitor the expression of genes involved in stress response over time, aiming to link expression with antibiotic survival outcomes. Our results reveal a counterintuitive finding: monitoring multiple gene reporters does not necessarily improve our ability to predict antibiotic survival outcomes compared to single gene reporters. This result emphasizes the need for a deeper mechanistic understanding of the relationship between stress response gene expression and antibiotic tolerance.
202. Targeting PCNA/AR interaction inhibits AR-mediated signaling in castration resistant prostate cancer cells.
We previously showed that proliferating cell nuclear antigen (PCNA) interacts with androgen receptor (AR) through a PIP-box (PIP-box4) at the N-terminus of AR and regulates AR activity. In this study, we further investigated PCNA/AR interaction. We identified a second PIP-box (PIP-box592) in the DNA binding domain of AR and found that dihydrotestosterone enhances the binding of full-length AR (AR-FL) but not a constitutively active variant (AR-V7) to PCNA. Treatment with R9-AR-PIP, a PIP-box4-mimicking small peptide, inhibits the PCNA/AR interaction, AR occupancy at the androgen response element (ARE) in PSA and p21 genes, and expression of AR target genes, and induces cytotoxicity in AR-positive castration-resistant prostate cancer (CRPC) cells. R9-AR-PIP also significantly inhibits transcriptional activity of AR-FL upon dihydrotestosterone stimulation and the constitutive activity of AR-V7. Moreover, R9-AR-PIP and PCNA-I1S, a small molecule PCNA inhibitor, inhibit the ARE occupancy by AR-FL and AR-Vs in CCNA2 gene that encodes cyclin A2 and cyclin A2 expression. Finally, we found that cyclin A2 is overexpressed in all CRPC cells examined, suggesting that it may contribute to the development of CRPC. These data indicate that targeting PCNA/AR interaction inhibits both AR-FL- and AR-Vs-mediated signaling and implicates it could be a novel therapeutic strategy against CRPC.
203. Unraveling the Anti-Tumor Effects and Molecular Mechanisms of Hairyvein Agrimonia Herb in Gastric Cancer Through Network Pharmacology and Experimental Validation.
作者: Hequn He.;Xiaohui Jin.;Xiaoyun Ding.;Haizhong Jiang.;Xuguang Wang.;Yi Chen.;Jiyun Zhu.
来源: Cancer Rep (Hoboken). 2025年8卷5期e70169页
Stomach cancer has become one of the most common types of cancer, with its mortality rate ranking third in the world. Currently, the main treatments for gastric cancer are surgery, radiation therapy, and chemotherapy. Although current treatments can effectively prevent postoperative metastasis and recurrence of gastric cancer, they may also bring various adverse reactions in the gastrointestinal tract and side effects such as bone marrow suppression. Years of research have confirmed that traditional Chinese medicine treatment for gastric and other cancers has distinct characteristics and advantages. Combined treatment can increase the tumor inhibition rate, reduce the side effects of radiation and chemotherapy, improve patients' quality of life, and prolong the survival prognosis.
204. Gemcitabine resistance by CITED4 upregulation via the regulation of BIRC2 expression in pancreatic cancer.
作者: Eun-Jeong Jeong.;Yuna Roh.;Eunsun Jung.;Jin-Seong Hwang.;Taesang Son.;Hyun Seung Ban.;Tae-Su Han.;Young-Kug Choo.;Jang-Seong Kim.
来源: J Biomed Sci. 2025年32卷1期49页
Gemcitabine (GEM) is used as a first-line therapy for patients diagnosed with any stage of pancreatic cancer (PC); however, patient survival is poor because of GEM resistance. Thus, new approaches to overcome GEM resistance in PC are urgently needed. Here, we aimed to establish an in vivo drug-resistant PC model and identify genes involved in GEM resistance. We focused on one of these factors, CITED4, and elucidated its mechanisms of action in GEM resistance in PC.
205. Synovial Gene expression after Hemarthrosis differs between FVIII-deficient mice treated with recombinant FVIII or FVIII-Fc Fusion Protein.
作者: Bilgimol Chumappumkal Joseph.;Thomas C Whisenant.;Esther J Cooke.;Jenny Y Zhou.;Nicca Falah.;Juan Andres De-Pablo Moreno.;Annette von Drygalski.
来源: PLoS One. 2025年20卷5期e0320322页
To investigate if FVIII-Fc Fusion protein (FcFVIII) may modulate inflammation and immune stimulation in hemophilic synovium via the Fc-portion of immunoglobulin used for half-life extension we performed gene expression profiling in FVIII-deficient mice. Hemarthrosis was induced by sub-patellar puncture in FVIII-KO mice, + /- periprocedural recombinant human (rh)FVIII,murine (m)FcFVIII, or mIgG2a. Synovium was harvested at baseline and on days (D) 3 and 14, followed by RNA extraction and sequencing, and histological analysis. RNASeq data were processed using standard protocols followed by differential gene expression (DGE) analysis. Functional enrichment analysis generated molecular pathways (KEGG and Reactome). To distinguish between on-target and off-target (related and unrelated to injury/bleed) effects the following groups were compared: i) Baseline vs. injured-saline, ii) injured-saline vs. injured-rhFVIII, iii) injured-saline vs. injured-mFcFVIII. Knee injury in FVIII-KO mice resulted in hemarthrosis, which was prevented by peri-procedural rhFVIII and mFcFVIII treatments. Only a small proportion of genes was affected by FVIII treatment, exhibiting overlap but also distinct differences between both FVIII-preparations. Acutely (D3), mFcFVIII had unique on-target effects related to immune and inflammatory regulation, whereas rhFVIII mostly affected mRNA and protein processing. On day 14, macrophage profiling indicated a transition from M1 to M2, and only mFcFVIII uniquely influenced pathways and genes associated with tissue remodeling and repair. Some mFcFVIII DGE patterns resembled mIgG2a patterns. Synovial vascular remodeling and cartilage health were better with mFcFVIII than rhFVIII. Interestingly, both FVIII-preparations exerted off-target effects on immune system pathways, albeit with temporal differences. These observations provide proof-of-principle that the type of FVIII preparation can influence synovial processes beyond acute hemostasis control, deserving exploration in the setting of joint bleed control in hemophilia.
206. Ephedrine Attenuates LPS-Induced Acute Lung Injury in Mice by Inhibiting OTUB1 and Promoting K48 Ubiquitination of HIF1α.
作者: Bo Zhou.;Keke Zhao.;Jiahui Xue.;Fangling Zhou.;Jin-Ao Duan.;Yang Niu.;Hanqing Wang.
来源: J Cell Mol Med. 2025年29卷10期e70598页
Acute lung injury (ALI) is a severe inflammatory lung disorder that requires effective therapeutic strategies. Ephedrine (EPH) is the main active component found in medicinal plants of the Ephedra genus and is commonly used to modulate inflammatory responses in various diseases. Hypoxia-inducible factor 1-alpha (HIF1α) is a subunit of hypoxia-inducible factor 1 (HIF1), which plays a critical regulatory role in cellular responses under hypoxic conditions. Moreover, the degradation pathway of HIF1α is regulated by the deubiquitinase Ovarian Tumour Domain-containing Ubiquitin Aldehyde Binding Protein 1 (OTUB1). The aim of this study is to investigate the therapeutic effects of EPH on ALI and its potential therapeutic mechanism. We utilised a lipopolysaccharide (LPS)-induced ALI mouse model and employed various methods for evaluation. Ultimately, our research findings demonstrate that EPH exhibits anti-ALI effects, with the involvement of HIF1α and OTUB1 in the pharmacological actions of EPH. In conclusion, our study results demonstrate that EPH exhibits anti-ALI effects and exerts its protective effects through modulation of the OTUB1 and HIF1α pathways. Our research findings not only lay the foundation for expanding the medicinal applications of EPH but also provide direction for seeking improved treatment strategies for ALI.
207. Targeting Cancer Stem Cells and Hedgehog Pathway: Enhancing Cisplatin Efficacy in Ovarian Cancer With Metformin.
作者: Emad Jafarzadeh.;Vahideh Montazeri.;Shima Aliebrahimi.;Ahmad Habibian Sezavar.;Mohammad H Ghahremani.;Seyed Nasser Ostad.
来源: J Cell Mol Med. 2025年29卷10期e70508页
Ovarian cancer (OC) remains a leading cause of gynaecological cancer deaths due to late diagnosis and the emergence of resistance to platinum-based chemotherapy, like cisplatin (Cis). Here, we investigated the potential of metformin (Met), a drug commonly used for type 2 diabetes, to overcome Cis resistance in OC. Our findings revealed a synergistic effect of Met with Cis in inhibiting cell viability, proliferation and colony/sphere formation capacity in both cisplatin-sensitive (A2780) and -resistant (A2780/CDDP) ovarian cancer cell lines. This synergistic action triggered apoptosis through DNA damage, S-phase cell cycle arrest and modulation of autophagy. Met also significantly decreased the expression of pluripotency transcription factors (Oct-4, Sox2 and Nanog), indicating its potential to target cancer stem cells (CSCs). Furthermore, the combination therapy downregulated multidrug resistance protein 1 (MDR1) and excision repair cross-complementation group 1 (ERCC1) expression, thereby sensitising resistant cells to Cis-induced cytotoxicity. Additionally, the combination treatment suppressed the Hedgehog (Hh) signalling pathway, which is an important factor in inhibiting CSCs. Our study highlights the potential of the Met signalling pathway to synergise with Cis, overcoming therapeutic resistance in OC by targeting diverse cellular processes, including CSCs, and warrants further investigation in preclinical models.
208. NSD2 and miRNAs as Key Regulators of Melanoma Response to Romidepsin and Interferon-α2b Treatment.
作者: Alessandro De Santis.;Lucrezia De Santis.;Francesca Rossi.;Silvia Gasparini.;Valerio Licursi.;Vito Antonio Amico.;Imerio Capone.;Alessandra Fragale.;Stefania D'atri.;Lucia Gabriele.;Carlo Presutti.
来源: Cancer Med. 2025年14卷10期e70917页
We investigated the role of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) and microRNAs (miRNAs) in melanoma de-differentiation following Romidepsin and Interferon-α2b (RI) treatment. Melanoma is the most lethal form of skin cancer, and despite advancements in therapy, treatment resistance remains a major challenge. De-differentiation has been widely recognized as a key factor contributing to therapy resistance.
209. Enhancing effect of 5-azacytidine on saline-alkaline resistance of Akebia trifoliata and underlying physiological and transcriptomic mechanisms.
作者: Xiao Xu Bi.;Kai Wang.;Xiaoqin Li.;Jiao Chen.;Jin Yang.;Jin Yan.;Guijiao Wang.;Yongfu Zhang.
来源: PeerJ. 2025年13卷e19285页
Saline-alkaline stress is a common problem in Akebia trifoliata cultivation. In this study, the enhancing effects of 5-azacytidine (5-AzaC) on the resistance of A. trifoliata to saline-alkaline stress and the underlying mechanisms were investigated. Plant height, stem diameter, biomass, root length, fresh weight of root, and root/shoot ratio of 6-month-old A. trifoliata seedlings were measured after saline-alkaline stress with or without 5-AzaC treatment. Moreover, the contents of photosynthetic pigments, malondialdehyde (MDA), H2O2, sodium, soluble sugar, and proline; activities of superoxide dismutase, peroxidase (POD), and catalase (CAT); and anatomical structures of root, stem, and leaf were assessed. Furthermore, comparative transcriptome sequencing was performed. The results demonstrated that growth and development of A. trifoliata were severely inhibited under saline-alkaline stress, suggesting that the seedlings were exposed to severe oxidative and osmotic stresses. Treatment with exogenous 5-AzaC could significantly relieve the symptoms of saline-alkaline stress in A. trifoliata. Under saline-alkaline stress, 5-AzaC could increase the stem diameter, biomass, root length, fresh weight of root, and root/shoot ratio and minimize damages to the anatomical structure. Moreover, absorption of Na+ was reduced; ionic balance was maintained; POD and CAT activities were significantly improved; proline and soluble sugar contents increased, and H2O2 and MDA contents decreased. Transcriptome analysis revealed that 5-AzaC functioned via regulating KEGG pathways such as plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, amino sugar and nucleotide sugar metabolism, and glutathione metabolism under saline-alkaline stress. Particularly, enhanced expression of genes from the auxin pathway in plant hormone signal transduction; the lignin synthetic pathway in phenylpropanoid biosynthesis; and photosystem II, photosystem I, photosynthetic electron transport, and F-type ATP pathway in photosynthesis may be related to 5-AzaC-induced saline-alkaline resistance. The results provided theoretical references for A. trifoliata cultivation in saline-alkaline soil and application of 5-AzaC to improve saline-alkaline tolerance in plants.
210. Ellagic acid suppresses the human renal carcinoma cell migration and invasion by targeting the RUNX2/MMP1 expression.
作者: Po-Yu Huang.;Tung-Wei Hung.;Yi-Hsien Hsieh.;Pei-Jen Wu.;Pei-Ni Chen.;Chu-Che Lee.;Jen-Pi Tsai.
来源: Int J Med Sci. 2025年22卷10期2308-2317页
Ellagic acid (EA) exerts anti-carcinogenic activity in various types of cancer. Matrix metalloproteinases (MMPs) are critical mediators in the pathogenesis of renal cell carcinoma (RCC) metastasis. Using in vitro experiments, this study aims to investigate the mechanisms by which EA inhibits RCC migration and invasion. The findings show that EA treatment inhibited RCC cell migration and invasion without reducing cell viability in normal human kidney cells (HK2 cells) and RCC cells (786-O and ACHN). A human proteinase array showed that EA treatment decreased MMP1 mRNA and protein expression levels in 786-O and ACHN cell lines. MMP1 expression is elevated in RCC tissues and correlates with tumor grade, stage, and overall survival in RCC patients. Our molecular docking model indicates a strong interaction between EA and MMP1. The addition of recombinant human MMP1 (Rh-MMP1) to RCC cells increased their migration and invasion; co-treatment with Rh-MMP1 and EA effectively reversed these effects. EA reduced the expression of the transcription factor RUNX2 in both RCC cell lines and knockdown of RUNX2 significantly decreased the migration and invasion abilities of EA-treated 786-O cells. High expression of RUNX2 in RCC patients is associated with higher tumor grade, stage, and poorer survival and correlates positively with MMP1 expression level. These results suggest that EA suppresses RUNX2 targeting of MMP1 expression, thereby conferring anti-invasive properties on RCC cells.
211. MicroRNA-mediated PTEN downregulation as a novel non-genetic mechanism of acquired resistance to PI3Kα inhibitors of head & neck squamous cell carcinoma.
作者: Claudio Pulito.;Sebastiano Vaccarella.;Alina Catalina Palcau.;Federica Ganci.;Renata Brandi.;Carlotta Frascolla.;Andrea Sacconi.;Valeria Canu.;Anna Benedetti.;Valentina De Pascale.;Sara Donzelli.;Anne-Sophie Fisch.;Valentina Manciocco.;Renato Covello.;Fulvia Pimpinelli.;Aldo Morrone.;Francesco Fazi.;Raul Pellini.;Paola Muti.;Jalna Meens.;Christina Karamboulas.;Anthony C Nichols.;Sabrina Strano.;Konrad Klinghammer.;Ingeborg Tinhofer.;Laurie Ailles.;Giulia Fontemaggi.;Giovanni Blandino.
来源: Drug Resist Updat. 2025年81卷101251页
Head and neck squamous cell carcinomas (HNSCCs) frequently harbor alterations in the PI3K signalling axis and, particularly, in the PIK3CA gene. The promising rationale of using PI3K inhibitors for the treatment of HNSCC has, however, clashed with the spontaneous development of resistance over time.
212. Transcriptomics Uncovers Key Genes for Photodynamic Killing on Trichosporon asahii Biofilms.
作者: Wanting Luo.;Guoliang Wang.;Hongyu Chang.;Guiming Liu.;He Zhu.;Haitao Li.
来源: Mycopathologia. 2025年190卷3期42页
The escalating threat of antifungal resistance stemming from Trichosporon asahii (T. asahii) biofilms necessitates the pursuit of innovative therapeutic strategies. Among these approaches, 5-aminolevulinic acid (ALA) photodynamic therapy (PDT), an emerging therapeutic modality, has exhibited promising potential in eradicating T. asahii biofilms.
213. A triterpene-enriched natural extract from Eucalyptus tereticornis modulates the expression of genes involved in adipogenesis, lipolysis, and extracellular matrix remodeling in a primary human and mouse cell line adipocyte.
作者: Sergio Acin.;Alejandro Mejia-Garcia.;Geysson Javier Fernandez.;Norman Balcazar.
来源: Pharm Biol. 2025年63卷1期374-386页
Obesity induces alterations in adipocyte size, tissue inflammation, vascularization, and extracellular matrix composition. Previous studies have shown that a leaf extract of Eucalyptus tereticornis Sm. (Myrtaceae), with ursolic acid, oleanolic acid, and ursolic acid lactone mixed with minor metabolites, provided a superior antiobesity effect than reconstituted triterpenoid mixtures in adipocyte cell lines and a pre-diabetic mouse model. Further identification of the molecular mechanisms of action of this mixture of triterpenes is required.
214. Neurorestorative properties of 2-butoxytetrahydrofuran from Holothuria scabra via activation of stress resistance and detoxification in a 6-OHDA-induced C. elegans model of Parkinson's disease.
作者: Sukrit Promtang.;Tanatcha Sanguanphun.;Pawanrat Chalorak.;Darunee Rodma.;Rungsarit Sunan.;Laurence S Pe.;Nakorn Niamnont.;Supin Chompoopong.;Prasert Sobhon.;Krai Meemon.
来源: Biomed Pharmacother. 2025年188卷118158页
Holothuria scabra (H. scabra), a marine organism traditionally known for its health benefits, has been utilized in both food and medicine. Our previous studies indicated that 2-butoxytetrahydrofuran (2-BTHF), which is isolated from H. scabra, possesses the potential to alleviate amyloid-β and α-synuclein accumulations associated with Alzheimer's and Parkinson's diseases (AD and PD), respectively. However, the mechanisms through which 2-BTHF mitigates PD-related neurotoxicity remain unclear. In this study, we investigated the effects of 2-BTHF on a 6-hydroxydopamine (6-OHDA)-induced Caenorhabditis elegans (C. elegans) model. Our results demonstrated that 2-BTHF recovered dopaminergic (DAergic) neurons from degeneration and restored dopamine-related behaviors. Furthermore, 2-BTHF reduced reactive oxygen species (ROS) production, preserved mitochondrial fluorescence, and decreased both mitochondrial and cytoplasmic unfolded protein responses (UPRmt and UPRcyto) activation. Transcriptome sequencing analysis revealed the critical roles of various systems, including the immune system, nervous system, glutathione (GSH) metabolism, xenobiotics, terpenoids, energy metabolism, cell growth and death, and aging-related longevity pathways. Additionally, 2-BTHF showed potential interactions with stress resistance and detoxification transcription factors, promoting the nuclear translocation of DAF-16 and SKN-1, which in turn activated their targets, including SOD-3, CTL-2, GCS-1, and GST-4. Moreover, 2-BTHF increased total GSH levels and reduced the ced-3-related cascade. This study demonstrates that 2-BTHF holds promise as a therapeutic agent for treating 6-OHDA-induced DAergic neurodegeneration in the C. elegans model.
215. Impact of iron exposure on Brazilian coral reefs: Acute vs. chronic stress responses.
作者: Letícia May Fukushima.;Juliana da Silva Fonseca.;Thales Jean Vidal.;Kely Paula Salvi.;Carlos Henrique Figueiredo Lacerda.;Patrícia Gomes Costa.;Miguel Mies.;Adalto Bianchini.
来源: Ecotoxicol Environ Saf. 2025年298卷118309页
Prior research has shown that exposure to metals increases corals vulnerability to bleaching by heightened oxidative stress. Understanding the impact of metal contamination on coral health in their natural environmental is crucial. This study investigate the effects of iron (Fe) exposure on Brazilian coral reef species. We evaluated the response of Mussismilia harttii, Millepora alcicornis, and Siderastrea sp. to acute (4 days) and chronic (28 days) Fe exposure under environmentally relevant concentrations (0, 100, 300 and 900 μg L-1). Experiments were conducted in laboratory and in a marine mesocosm Biomarkers including Fe bioaccumulation, lipid peroxidation (LPO), protein carbonylation (PCN), and DNA damage were measured. The correlation between chronic exposure results and environmental factors were also analyzed. The hypotheses were: a) Fe exposure would increase ROS production in corals, leading to biomolecule damage; b) acute and chronic Fe exposure would affect ROS production and biomolecule damage differently; c) Fe bioaccumulation would vary between species and concentrations; and d) environmental factors might influence coral responses to Fe. Results indicated that all species exhibited increased Fe bioaccumulation as metal concentrations increased, suggesting a common ability to absorb and accumulate Fe. The oxidative damage response vired between acute and chronic exposure, with acute exposure causing more damage while chronic exposure showed a temporal reduction in damage. Environmental factors (e.g. temperature, pH, salinity and dissolved oxygen) also influenced the coral responses, either exacerbating or mitigating oxidative stress effects. These findings highlight the importance of understanding Fe contamination impacts for the conservation of Brazilian coral reefs.
216. Unveiling the crosstalk between unfolded protein response and apoptosis in triclosan induced hepatotoxicity in Labeo rohita.
作者: Abha Trivedi.;Vaishnavi Saxena.;Mahdi Banaee.;Jumman Bakhasha.;Neeti Arya.;Kamlesh K Yadav.;Maria Giovanna Rizzo.;Caterina Faggio.
来源: Sci Rep. 2025年15卷1期17089页
Triclosan (TCS), a widely used antimicrobial, has emerged as a concerning aquatic pollutant, especially post-COVID-19 due to increased disinfectant use. The study aimed to investigate the toxic impacts of TCS on Labeo rohita, revealing a 96-h LC50 of 0.742 mg/L. Well-acclimatized fish were categorised into three groups: one control and two treatment (T1 and T2) that were exposed to 1/10th and 1/5th of 96-h LC50 i.e., 0.0742 mg/L and 0.148 mg/L, respectively for 6 weeks under semi-static condition. Significantly (p < 0.05) elevated extents of reactive oxygen species (ROS) in the liver indicated enhanced oxidative stress. The activities of enzymatic antioxidants viz. superoxide dismutase (SOD) and catalase (CAT) were significantly (p < 0.05) increased while the reduced glutathione (GSH) levels were significantly (p < 0.05) decreased in a dose- and duration-dependent manner. A significant (p < 0.05) increase was observed in the lipid peroxidation (LPO) rate, which coincided with disruptions in the histological structure of the liver. Significant (p < 0.05) induction in Micronuclei frequency validated genomic instability. Furthermore, Endoplasmic Reticulum (ER) stress was marked by the increased intracellular calcium levels and elevated expression of grp78, chop, atf4, perk, eIF2α and gadd34 in TCS-exposed groups. Moreover, the consequent activation of bax, caspase-3, caspase-9, apaf-1 and the regulation of bcl-2 due to ER-stress, ultimately resulted in apoptosis of hepatocytes. Pearson correlation matrix and Principal Component Analysis (PCA) further underscored key interactions among parameters. Our findings demonstrate that the TCS, at its sub-lethal concentrations, is causing severe anomalies and even cell-death via triggering ER-stress-mediated apoptotic pathway in the fish liver.
217. Inhibiting peptidylarginine deiminases (PAD1-4) by targeting a Ca2+ dependent allosteric binding site.
作者: Leslie A Dakin.;Li Xing.;Justin Hall.;Weidong Ding.;Felix F Vajdos.;Jeffrey W Pelker.;Simeon Ramsey.;Paul Balbo.;Parag V Sahasrabudhe.;Mary Ellen Banker.;Won Young Choi.;Stephen W Wright.;Jeanne S Chang.;John M Curto.;Jennifer E Davoren.;Susan E Drozda.;Kimberly F Fennell.;Kentaro Futatsugi.;Steve Kortum.;Katherine L Lee.;Shenping Liu.;Frank Lovering.;Jennifer A Nicki.;John I Trujillo.;Fabien Vincent.;Mark E Schnute.
来源: Nat Commun. 2025年16卷1期4579页
Peptidylarginine deiminases (PAD1-4) are calcium dependent enzymes responsible for protein citrullination, a post-translational modification converting arginine residues to citrulline. Elevated levels of citrullinated proteins have been associated with rheumatoid arthritis, neurodegenerative diseases, and cancers. Though highly selective PAD4 inhibitors have been described, inhibitors to the broader family currently are limited to covalent substrate analogs. Herein, we describe an allosteric binding pocket common to PAD1-4 suitable for the identification of potent, non-covalent enzyme inhibitors. A ligand-based virtual screen is utilized to identify a PAD4 inhibitor for which surface plasmon resonance confirms target binding but non-competitively with a known PAD4 ligand. We further show through co-crystal structure analysis that the ligand binds PAD4 at an allosteric pocket resulting in stabilization of a catalytically inactive, calcium-deficient enzyme conformation. A ligand designed based on this site potently inhibits all four PAD isozymes and prevents protein citrullination in neutrophils with a broader protein repertoire than observed with a PAD4-selective inhibitor.
218. Downregulation of transforming growth factor-β2 enhances the chemosensitivity to gemcitabine with diminished metastasis in pancreatic cancers.
作者: Dohee Ahn.;Hong Kyu Lee.;Sang Hyeok Bae.;Hwayoung Na.;Kyung-Chul Choi.
来源: Biomed Pharmacother. 2025年188卷118151页
Pancreatic cancer is characterized by high rates of metastasis, recurrence, and chemoresistance, contributing to its poor prognosis. Transforming growth factor-β2 (TGF-β2), a member of the TGF-β family, plays a pivotal role in promoting cancer cell metastasis and mediating chemoresistance, particularly in advanced stages of tumor progression. However, the precise role of TGF-β in chemoresistance and metastasis in pancreatic cancer has not been studied yet. In the current study, we investigated the potential of human TGF-β2 antisense oligonucleotides (TGF-β2i) to enhance the chemosensitivity to gemcitabine in pancreatic cancer, using human pancreatic cancer cell lines (hPCCs; PANC-1, MIA PaCa-2, and AsPC-1), a co-culture model with human pancreatic stellate cells (hPSCs), a cancer-associated fibroblast-integrated pancreatic cancer organoid model (CIPCO), and an orthotopic xenograft mouse model. TGF-β2i decreased cell proliferation, migration, and viability in hPCCs, and its combination with gemcitabine exhibited a synergistic effect in PANC-1 and MIA PaCa-2 cells. Flow cytometry demonstrated a decrease in CD44 +CD24 +EpCAMHigh cancer stem-like cell populations following TGF-β2i treatment. In co-culture models, hPSCs-induced enhancement of hPCCs migration was attenuated by TGF-β2i. In the CIPCOs, TGF-β2i suppressed the gemcitabine-induced expression of extracellular matrix components such as COL1A1 and VIM. Furthermore, in an orthotopic mouse model generated by co-inoculating hPCCs and hPSCs into the pancreatic wall, co-treatment of TGF-β2i with gemcitabine significantly delayed tumor growth and metastasis to the liver compared to vehicle control. These findings suggest that TGF-β2i enhances chemosensitivity and suppresses metastatic properties by regulating both tumor-intrinsic and -extrinsic factors, indicating that targeting TGF-β2 could be a promising strategy for managing pancreatic cancer.
219. CPI203, a BET inhibitor, down-regulates a consistent set of DNA synthesis genes across a wide array of glioblastoma lines.
作者: Matthew C Garrett.;Troy Carnwath.;Rebecca Albano.;Yonghua Zhuang.;Catherine A Behrmann.;Merissa Pemberton.;Farah Barakat.;Robert Lober.;Mark Hoeprich.;Anthony Paravati.;Marilyn Reed.;Hailey Spry.;Daniel Woo.;Eric O'Brien.;Brett VanCauwenbergh.;John Perentesis.;Rani Nasser.;Mario Medvedovic.;David R Plas.
来源: PLoS One. 2025年20卷5期e0306846页
Glioblastomas utilize malignant gene expression pathways to drive growth. Many of these gene pathways are not directly accessible with molecularly targeted pharmacological agents. Chromatin-modifying compounds can alter gene expression and target glioblastoma growth pathways. In this study, we utilize a systematic screen of chromatin-modifying compounds on a panel of patient-derived glioblastoma lines to identify promising compounds and their associated gene targets.
220. Chaetocin enhances tumor necrosis factor‑related apoptosis‑inducing ligand‑mediated apoptosis by enhancing DR5 stabilization and reactive oxygen species generation in human glioblastoma cells.
Chaetocin, a fungal metabolite, exerts notable antiproliferative effects against solid tumors by triggering apoptosis; however, the mechanisms underlying its effects remain unclear. As tumor necrosis factor (TNF)‑related apoptosis‑inducing ligand (TRAIL) promotes apoptosis in certain types of tumor, the present study aimed to explore the sensitizing effects of chaetocin in TRAIL‑induced apoptosis in human glioblastoma cells and the underlying mechanism. Human glioblastoma cells (U343MG, U87MG, U251MG, and T98G) and embryonic kidney cells (HEK293) were co‑treated with chaetocin and TRAIL, followed by assessment of cell viability. The results from viability and apoptosis assays demonstrated a significant increase in caspase-dependent apoptosis in glioblastoma cells, but not in HEK293 cells, upon co-treatment with chaetocin and TRAIL. Additionally, death receptor 5 (DR5) expression analysis demonstrated that co‑treatment with chaetocin and TRAIL upregulated DR5 expression in a dose‑ and time‑dependent manner by increasing the stability of DR5 on the cell surface. In glioblastoma cells, small interfering RNA‑mediated DR5 knockdown markedly suppressed chaetocin/TRAIL‑induced apoptosis. Moreover, chaetocin enhanced reactive oxygen species (ROS) production, which facilitated TRAIL‑mediated apoptosis by enhancing DR5 upregulation. Thus, chaetocin sensitized the human glioblastoma cell lines U87MG and T98G to TRAIL‑mediated apoptosis by upregulating DR5 expression through ROS-mediated mechanisms. The present findings underscore chaetocin as a potential novel therapeutic agent for glioblastoma.
|