181. Epigenetics Modulators as Therapeutics for Neurological Disorders.
作者: Mansi Gaba.;Ashwani Sharma.;Nitin Chitranshi.;Girish Kumar.;Reshu Virmani.;Tarun Virmani.;Dalapathi Gugulothu.
来源: Curr Pharm Des. 2025年31卷19期1499-1520页
Epigenetics mechanisms play a crucial role in regulating gene expression and cellular function in the development and progression of neurological disorders. Emerging evidence suggests that dysregulation of these epigenetic processes contributes significantly to the pathogenesis of various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNAs, significantly impact neural plasticity. The use of epigenetic modulators, including DNA methyltransferase and histone deacetylase inhibitors, offers a promising strategy to correct and modify aberrant epigenetic marks, potentially restoring neurological homeostasis. This review highlights recent research findings from ongoing clinical trials and the potential benefits and challenges of epigenetic therapies for neurological disorders. We discuss the capacity of these interventions to potentially halt or reverse disease progression, their targeted nature, and their neuroprotective effects. Additionally, we address the hurdles facing the field, including issues of specificity, delivery, and long-term efficacy.
182. Effect of osmolytes and posttranslational modifications on modulating the chaperone function of α-crystallin.
作者: Khuraijam Surjalal Singh.;Snigdha Krishna.;Akshita Gupta.;Laishram Rajendrakumar Singh.
来源: Prog Mol Biol Transl Sci. 2025年211卷89-111页
Proteins are responsible for a vast majority of various cellular effector processes. α-crystallin is one of the most important proteins in the lens of the eye, which acts as a molecular chaperone that keeps the lens transparent and refractive. α-crystallin is categorized as an intrinsically disordered protein (IDP), devoid of a stable three-dimensional structure, in contrast to conventional globular proteins. Because of its structural flexibility, it can stop denatured proteins from aggregating and building up within the lens over time. α-crystallin's dynamic quaternary structure, which allows it to exist in a variety of oligomeric forms, from dimers to massive assemblies, improves its chaperone function and flexibility. Its intrinsically disordered nature enables it to interact with a variety of client proteins due to its large non-polar and polar residue content and lack of a hydrophobic core. Furthermore, under physiological stress, osmolytes like sorbitol, TMAO, and urea are essential in regulating the stability and function of α-crystallin. Post-translational modifications (PTMs) such as glycation, in which reducing sugars combine with amino groups on the protein to generate advanced glycation end-products, impair α-crystallin's ability to function. These AGEs can cross-link α-crystallin molecules to prevent protein aggregation, changing their structure and decreasing their chaperone action. Because of their raised blood glucose levels, diabetics have an increased chance of developing cataracts as a result of this process. Comprehending how glycation and other PTMs affect α-crystallin is crucial for formulating treatment plans to maintain lens transparency and fight cataracts linked to aging and metabolic disorders.
183. Understanding microRNA-Mediated Chemoresistance in Colorectal Cancer Treatment.
作者: Guillermo Valenzuela.;Héctor R Contreras.;Katherine Marcelain.;Mauricio Burotto.;Jaime González-Montero.
来源: Int J Mol Sci. 2025年26卷3期
Colorectal cancer (CRC) remains the second most lethal cancer worldwide, with incidence rates expected to rise substantially by 2040. Although biomarker-driven therapies have improved treatment, responses to standard chemotherapeutics, such as 5-fluorouracil (5-FU), oxaliplatin, and irinotecan, vary considerably. This clinical heterogeneity emphasizes the urgent need for novel biomarkers that can guide therapeutic decisions and overcome chemoresistance. microRNAs (miRNAs) have emerged as key post-transcriptional regulators that critically influence chemotherapy responses. miRNAs orchestrate post-transcriptional gene regulation and modulate diverse pathways linked to chemoresistance. They influence drug transport by regulating ABC transporters and affect metabolic enzymes like thymidylate synthase (TYMS). These activities shape responses to standard CRC chemotherapy agents. Furthermore, miRNAs can regulate the epithelial-mesenchymal transition (EMT). The miR-200 family (e.g., miR-200c and miR-141) can reverse EMT phenotypes, restoring chemosensitivity. Additionally, miRNAs like miR-19a and miR-625-3p show predictive value for chemotherapy outcomes. Despite these promising findings, the clinical translation of miRNA-based biomarkers faces challenges, including methodological inconsistencies and the dynamic nature of miRNA expression, influenced by the tumor microenvironment. This review highlights the critical role of miRNAs in elucidating chemoresistance mechanisms and their promise as biomarkers and therapeutic targets in CRC, paving the way for a new era of precision oncology.
184. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics.
作者: Yun Ju Lee.;Woo Ryung Kim.;Eun Gyung Park.;Du Hyeong Lee.;Jung-Min Kim.;Hyeon-Su Jeong.;Hyun-Young Roh.;Yung Hyun Choi.;Vaibhav Srivastava.;Anshuman Mishra.;Heui-Soo Kim.
来源: Int J Mol Sci. 2025年26卷3期
The use of plastics, valued for its affordability, durability, and convenience, has grown significantly with the advancement of industry. Paradoxically, these very properties of plastics have also led to significant environmental challenges. Plastics are highly resistant to decomposition, resulting in their accumulation on land, where they eventually enter aquatic environments, due to natural processes or human activities. Among these plastics, microplastics, which are tiny plastic particles, are particularly concerning when they enter aquatic ecosystems, including rivers and seas. Their small size makes them easily ingestible by aquatic organisms, either by mistake or through natural feeding behaviors, which poses serious risks. Moreover, microplastics readily adsorb other pollutants present in aquatic environments, creating pollutant complexes that can have a synergistic impact, magnifying their harmful effects compared to microplastics or pollutants acting alone. As a result, extensive research has focused on understanding the effects of microplastics on aquatic organisms. Numerous studies have demonstrated that aquatic organisms exposed to microplastics, either alone or in combination with other pollutants, exhibit abnormal hatching, development, and growth. Additionally, many genes, particularly those associated with the antioxidant system, display abnormal expression patterns in these conditions. In this review, we examine these impacts, by discussing specific studies that explore changes in phenotype and gene expression in aquatic organisms exposed to microplastics, both independently and in combination with adsorbed pollutants.
185. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus.
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
186. Drug discovery strategy for TAK-418, a specific inhibitor of LSD1 enzyme activity, as a novel therapy for autism.
The pathophysiology of neurodevelopmental disorders is associated with multiple genetic and environmental risk factors. Epigenetics, owing to its potential to recover global gene expression changes associated with disease conditions, is a crucial target to address neurodevelopmental disorders influenced by genetic and environmental factors. Here, we discuss the discovery of selective inhibitors of lysine-specific demethylase 1 (LSD1) enzyme activity and their therapeutic potential for neurodevelopmental disorders through epigenetic regulation in the brain. Conventional LSD1 inhibitors not only inhibit LSD1 enzymatic activity but also interfere with LSD1-cofactor complex formation, thus leading to hematological side effects. Notably, investigations on the structure-activity relationship have revealed (aminocyclopropyl)benzamide and (aminocyclopropyl)thiophene carboxamide derivatives as novel series of LSD1 inhibitors with fewer hematological side effects. Subsequently, we discovered T-448 and TAK-418 (clinical candidate) that selectively and potently inhibit LSD1 enzymatic activity without disrupting the LSD1-cofactor complex, resulting in potent epigenetic modulation without significant hematological toxicity risks in rodents. T-448 and TAK-418, at doses that achieved almost complete LSD1 occupancy in the brain, improved behavioral abnormalities in multiple rodent models of neurodevelopmental disorders. Furthermore, comprehensive RNA expression analyses revealed that, although gene expression abnormalities exhibited limited commonality across disease models, TAK-418 normalized each aberrant gene expression pattern in these rodent models. A positron emission tomography tracer was discovered to potentially measure the occupancy of TAK-418 at the LSD1 active site in the brain to improve the translatability of its preclinical efficacy to therapeutic effects in humans. TAK-418-type LSD1 inhibitors may offer novel treatment options for neurodevelopmental disorders.
187. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment.
Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by elevated pulmonary vascular resistance and pulmonary artery pressure, resulting from a multitude of etiological factors. If left untreated, PAH progressively leads to right heart failure and is associated with high mortality. The etiology of PAH is multifactorial, encompassing both congenital genetic predispositions and acquired secondary influences. Epigenetics, which refers to the regulation of gene expression through chromosomal alterations that do not involve changes in the DNA sequence, has garnered significant attention in PAH research. This includes mechanisms such as DNA methylation, histone modification, and RNA modification. Aberrant epigenetic modifications have been closely linked to the dysregulated proliferation and apoptosis of pulmonary artery smooth muscle cells and endothelial cells, suggesting that these alterations may serve as pivotal drivers of the pathophysiological changes observed in PAH. This review examines the potential impact of epigenetic alterations on the pathogenesis of PAH, highlighting their promise as therapeutic targets. Furthermore, we explore emerging therapeutic strategies and compounds aimed at modulating these epigenetic markers, and discusses their potential applications in both preclinical models and clinical trials. As our understanding of epigenetics deepens, it holds the potential to unlock novel avenues for the precise, individualized treatment of PAH, offering a new frontier in the fight against this debilitating disease.
188. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies.
作者: Ali G Alkhathami.;Harikumar Pallathadka.;Sejal Shah.;Subbulakshmi Ganesan.;Abhishek Sharma.;Seema Devi.;Yasser Fakri Mustafa.;Mohammed Qasim Alasheqi.;Abed J Kadhim.;Ahmed Hussein Zwamel.
来源: Exp Cell Res. 2025年445卷2期114434页
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
189. Targeting Lactic Acid Modification in Ischemic Heart Diseases: Novel Therapeutics and Mechanism.
作者: Tangjiang Wan.;Yucheng Liang.;Tianwen Wei.;Zijie Chen.;Yafei Li.
来源: J Cardiovasc Transl Res. 2025年18卷2期257-267页
Ischemic heart disease (IHD), especially acute myocardial infarction (AMI), has a high mortality rate and poses a great threat to human health. When myocardial infarction occurs, the structure and function of the myocardium are significantly damaged, and its metabolisms switch from oxidative phosphorylation to glycolysis, producing lactate. Lactylation, as a newly discovered post-translational modification (PMT) in recent years, is involved in the regulation of gene expression, and cell proliferation. Emerging studies have revealed that lactate and lactylation modifications participate in inflammation and cardiac repair, and play an important role in cardiovascular diseases, such as myocardial infarction, myocardial fibrosis, and heart failure. Therefore, in this review, we discuss how glucose metabolism, glycolytic end-product lactate, and lactylation potentially interact with pathological processes, including inflammation, cardiac fibrosis, and heart failure. And targeting glycolysis and lactylation modification could provide a promising future for cardiovascular diseases.
190. Carbon-Based Nanomaterials Alter the Behavior and Gene Expression Patterns of Bacteria.
作者: Shima Afrasiabi.;Alireza Partoazar.;Ramin Goudarzi.;Ahmad Reza Dehpour.
来源: J Basic Microbiol. 2025年65卷5期e2400545页
One of the most dangerous characteristics of bacteria is their propensity to form biofilms and their resistance to the drugs used in clinical practice today. The total number of genes that can be categorized as virulence genes ranges from a few hundred to more than a thousand. The bacteria employ a variety of mechanisms to regulate the expression of these genes in a coordinated manner during infection. The search for new agents with anti-virulence capacity is therefore crucial. Nanotechnology provides safe platforms for targeted therapies to combat a broad spectrum of microbial infections. As a new class of innovative materials, carbon-based nanomaterials (CBNs), which include carbon dots, carbon nanotubes, graphene, and fullerenes can have strong antibacterial activity. Exposure to CBNs has been shown to affect bacterial gene expression patterns. This study investigated the effect of CBNs on the repression of specific genes related to bacterial virulence/pathogenicity.
191. Targeting RNA splicing modulation: new perspectives for anticancer strategy?
作者: Xuemei Lv.;Xiaoyu Sun.;Yang Gao.;Xinyue Song.;Xiaoyun Hu.;Lang Gong.;Li Han.;Miao He.;Minjie Wei.
来源: J Exp Clin Cancer Res. 2025年44卷1期32页
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings into clinical practice.
192. Natural compounds as modulators of miRNAs: a new frontier in bladder cancer treatment.
作者: Ahmed I Abulsoud.;Shaza H Aly.;Sherif S Abdel Mageed.;Nourhan M Abdelmaksoud.;Walaa A El-Dakroury.;Osama A Mohammed.;Mustafa Ahmed Abdel-Reheim.;Mohamed Bakr Zaki.;Nehal I Rizk.;Manar Mohammed El Tabaa.;Mahmoud Rashed.;Riham A El-Shiekh.;Ahmed S Doghish.
来源: Med Oncol. 2025年42卷3期56页
Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer. Polyphenols, flavonoids, and other phytochemicals are natural compounds found to have inherent potential to modulate miRNAs and reform the oncogenic properties of bladder cancer cells regulating cell growth and death. In integration with the current cancer treatment regimes, such natural agents may safely substitute for the traditional chemical chemotherapeutic agents of the conventional approaches. To this end, this review presents the existing knowledge of natural compounds as regulators of miRNA, their mechanisms for the management of BC, the role of their nanoparticles, and future novel therapies. The use of these compounds is not only a therapeutic practice for the conditions of bladder cancer, but it also upholds new avenues for creativity.
193. Key epigenetic enzymes modulated by natural compounds contributes to tumorigenicity.
作者: Xiaoyue Zhou.;Wanqing Liu.;Ziqi Liang.;Jiali Liang.;Tong Zhang.;Wenyi Gao.;Zizhao Yang.
来源: Int J Biol Macromol. 2025年301卷140391页
Dysregulation of epigenetic regulation is observed in numerous tumor cells. The therapeutic effects of natural products on tumors were investigated through a comprehensive analysis of active ingredients derived from various structured natural products. The analysis focuses on regulating key enzymes involved in epigenetic control. To study the modulation of these enzymes for tumor treatment, the structural characteristics of natural products that impact tumorigenesis were identified. The presence of specific patterns suggests that compounds sharing structural similarities can potentially induce therapeutic effects on identical tumors through modulation of distinct modifying enzymes. Structurally analogous natural products can likewise achieve therapeutic effects across diverse tumor types via their interaction with a common epigenetic enzyme. There exist numerous flavonoids with the capability to modulate METTL3, thereby influencing the development of various tumors. The normalization process was implemented to account for a common phenomenon, wherein structurally distinct compounds effectively target the same tumor by modulating a shared key enzyme. By summarizing, valuable insights into the role of compound-epigenetic enzymes in tumor development have been obtained. This discovery establishes a crucial scientific foundation for the prevention and treatment of tumor development through the utilization of structurally similar natural active ingredients.
194. Insights on Bmi-1 therapeutic targeting in head and neck cancers.
The B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) protein of the polycomb complex is an essential mediator of the epigenetic transcriptional silencing by the chromatin structure. It has been reported to be crucial for homeostasis of the stem cells and tumorigenesis. Though years of investigation have clarified Bmi-1's transcriptional regulation, post-translational modifications, and functions in controlling cellular bioenergetics, pathologies, and DNA damage response, the full potential of this protein with so many diverse roles are still unfulfilled. Bmi-1 is overexpressed in many human malignancies. Unraveling the Bmi-1's precise functional role in head and neck cancers can be attractive for mechanisms-based developmental therapeutics. This review attempts to synthesize the current knowledge on Bmi-1 with an emphasis on the role that Bmi-1 plays in oral cancer progression and evaluates how this can be used in advancing clinical treatment strategies for head and neck cancer. Bmi-1 is a promising target for therapy because it has been linked to a stemness and oncogenesis signature. However, to use Bmi-1 as a prognostic marker and a therapeutic target in the long run, new methods are imperative for further characterization of the physiological roles of Bmi-1. Current biological insights of Bmi-1 as a master regulator of stem cell self-renewal have emerged as a prominent player in cancer stem cell (CSC) biology. Bmi-1+ cells mediate chemoresistance and metastasis. On the other hand, inhibiting Bmi-1 rescinds CSC function and re-sensitizes cancer cells to chemotherapy. Therefore, elucidating therapeutic approaches targeting Bmi-1 can be leveraged to further research analysis to advance clinical treatment strategies for head and neck cancer.
195. Epigenetic modulation of doxorubicin resistance and strategies for enhancing chemotherapeutic sensitivity.
With the rising global cancer burden, the dependency on chemotherapy also rises along with the complication of chemoresistance development. Studies on multi-drug resistant proteins provide a wide range of regulators, although the exact mechanism is not yet clearly understood. Epigenetic modifications play a vital role in the regulation of cellular processes and also in determining the efficacy of cancer therapy by modulating resistance development and tumor progression. Of the various epigenetic modifications, histone acetylation/deacetylation and DNA methylation are currently given more focus in evaluating their role in resistance development to doxorubicin. This chapter highlights the various studies conducted on the regulation of doxorubicin (dox) resistance based on these epigenetic modifications and the clinical trials conducted in evaluating its effectiveness as a potential combinational therapy.
196. The translational potential of epigenetic modulatory bioactive phytochemicals as adjuvant therapy against cancer.
作者: Priya Mondal.;Gowthami Jayaprakash.;Syed Musthapa Meeran.
来源: Int Rev Cell Mol Biol. 2025年390卷140-185页
In preclinical studies, bioactive phytochemicals have shown enormous potential therapeutic efficacy against various human malignancies. These natural compounds have been shown to possess an inherent potential to alter the molecular signaling pathways and epigenetic modulatory activity involved in multiple physiological functions. Recently, epigenetic therapy has emerged as an important therapeutic modality due to the reversible nature of epigenetic alterations. To date, epigenetic modulatory compounds, for example, DNA methyltransferase inhibitors 5-azacytidine and 5'-deoxyazacytidine, as well as histone deacetylase inhibitors Vorinostat, Romidepsin, and Belinostat (PXD101), have been clinically approved by the FDA for the treatment of patients of leukemia and myelodysplastic syndrome. However, these synthetic epigenetic inhibitors are not as effective against many of the solid tumors. Therefore, the epigenetic modulatory phytochemicals provide new hope for improving the treatment modality as neoadjuvant and adjuvant therapy. It has been established that targeting more than one protein in the transformed cells simultaneously, that is, the multi-targeted therapeutic approach, might invoke a better therapeutic response. Therefore, here, we are compiling diverse evidences of the translational potential of novel combinatorial approaches utilizing the epigenetic modulatory phytochemicals with available therapeutics in the course of cancer treatment.
197. The Intersection of Epigenetics and Senolytics in Mechanisms of Aging and Therapeutic Approaches.
作者: Daiana Burdusel.;Thorsten R Doeppner.;Roxana Surugiu.;Dirk M Hermann.;Denissa Greta Olaru.;Aurel Popa-Wagner.
来源: Biomolecules. 2024年15卷1期
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging. Senolytics, a class of drugs targeting and eliminating senescent cells, address the accumulation of dysfunctional cells that contribute to tissue degradation and chronic inflammation through the senescence-associated secretory phenotype. This scoping review examines the intersection of epigenetic mechanisms and senolytic therapies in aging, focusing on their combined potential for therapeutic interventions. Senescent cells display distinct epigenetic signatures, such as DNA hypermethylation and histone modifications, which can be targeted to enhance senolytic efficacy. Epigenetic reprogramming strategies, such as induced pluripotent stem cells, may further complement senolytics by rejuvenating aged cells. Integrating epigenetic modulation with senolytic therapy offers a dual approach to improving healthspan and mitigating age-related pathologies. This narrative review underscores the need for continued research into the molecular mechanisms underlying these interactions and suggests future directions for therapeutic development, including clinical trials, biomarker discovery, and combination therapies that synergistically target aging processes.
198. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer.
作者: Giulia Casari.;Brenda Romaldi.;Andrea Scirè.;Cristina Minnelli.;Daniela Marzioni.;Gianna Ferretti.;Tatiana Armeni.
来源: Biomolecules. 2024年15卷1期
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
199. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation.
作者: Kenly Wuputra.;Wen-Hung Hsu.;Chia-Chen Ku.;Ya-Han Yang.;Kung-Kai Kuo.;Fang-Jung Yu.;Hsin-Su Yu.;Kyosuke Nagata.;Deng-Chyang Wu.;Chao-Hung Kuo.;Kazunari K Yokoyama.
来源: Biochem Pharmacol. 2025年233卷116761页
Aryl hydrocarbon receptor (AHR) and nuclear factor-erythroid 2-related factor 2 (NRF2) can regulate a series of genes encoding the detoxifying phase I and II enzymes, via a signaling crosstalk known as the "AHR-NRF2 gene battery". The chromatin transcriptional regulator Jun dimerization protein 2 (JDP2) plays a central role in thetranscription of AHR gene in response to the phase I enzyme ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. It forms a transcriptional complex with AHR-AHR nuclear translocator (ARNT) and NRF2-small musculoaponeurotic fibrosarcoma proteins (sMAF), which are then recruited to the respective cis-elements, such as dioxin response elements and antioxidant response elements, respectively, in the AHR promoter. Here, we present a revised description of the AHR-NRF2 gene battery as the AHR-NRF2-JDP2 gene battery for transactivating the AHR promoter by phase I enzyme ligands. The chromatin regulator JDP2 was found to be involved in the movement of AHR-NRF2 complexes from the dioxin response element to the antioxidant response element in the AHR promoter, during its activation in a spatiotemporal manner. This new epigenetic and chromatin remodeling role of AHR-NRF2-JDP2 axis is useful for identifying new therapeutic targets for various diseases, including immunological response, detoxification, development, and cancer-related diseases.
200. Exploring Ubiquitination in Spinal Cord Injury Therapy: Multifaceted Targets and Promising Strategies.
作者: Caizhen Shi.;Bingbing Wang.;Tianyu Zhai.;Can Zhang.;Jiarui Ma.;Yanjie Guo.;Yanling Yang.;Chen Chen.;Jianzhong Gao.;Lin Zhao.
来源: Neurochem Res. 2025年50卷1期82页
Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases. Numerous studies have shown that ubiquitination plays a key role in modulating processes such as inflammatory responses, apoptosis, and nerve regeneration following SCI, thereby influencing injury repair. Accordingly, targeting ubiquitination has the potential for mitigating harmful inflammatory responses, inhibiting dysregulated programmed cell death, and protecting the integrity of the blood-spinal cord barrier, thereby providing a novel therapeutic strategy for SCI. In this review, we discuss the role of ubiquitination and its potential as a therapeutic target in SCI, aiming to offer a foundation for developing ubiquitination-targeted therapies for this condition.
|