当前位置: 首页 >> 检索结果
共有 339 条符合本次的查询结果, 用时 2.0353296 秒

1. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants.

作者: Marie-France Hivert.;Costas A Christophi.;Paul W Franks.;Kathleen A Jablonski.;David A Ehrmann.;Steven E Kahn.;Edward S Horton.;Toni I Pollin.;Kieren J Mather.;Leigh Perreault.;Elizabeth Barrett-Connor.;William C Knowler.;Jose C Florez.; .
来源: Diabetes. 2016年65卷2期520-6页
Large genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown whether people with genetic enrichment for these IR variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score (GRS) based on 17 established IR variants and effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1 year of follow-up in the DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β = -0.754 [SE = 0.229] log-ISI per unit, P = 0.001 in fully adjusted models). There was no differential effect of treatment for the association between the IR-GRS on the change in ISI; higher IR-GRS was associated with an attenuation in ISI improvement over 1 year (β = -0.520 [SE = 0.233], P = 0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin treatment improved the ISI, regardless of the genetic burden of IR variants.

2. The Glucagon-Like Peptide 1 Receptor Agonist Exenatide Inhibits Small Intestinal Motility, Flow, Transit, and Absorption of Glucose in Healthy Subjects and Patients With Type 2 Diabetes: A Randomized Controlled Trial.

作者: Sony S Thazhath.;Chinmay S Marathe.;Tongzhi Wu.;Jessica Chang.;Joan Khoo.;Paul Kuo.;Helen L Checklin.;Michelle J Bound.;Rachael S Rigda.;Benjamin Crouch.;Karen L Jones.;Michael Horowitz.;Christopher K Rayner.
来源: Diabetes. 2016年65卷1期269-75页
The short-acting glucagon-like peptide 1 receptor agonist exenatide reduces postprandial glycemia, partly by slowing gastric emptying, although its impact on small intestinal function is unknown. In this study, 10 healthy subjects and 10 patients with type 2 diabetes received intravenous exenatide (7.5 μg) or saline (-30 to 240 min) in a double-blind randomized crossover design. Glucose (45 g), together with 5 g 3-O-methylglucose (3-OMG) and 20 MBq (99m)Tc-sulfur colloid (total volume 200 mL), was given intraduodenally (t = 0-60 min; 3 kcal/min). Duodenal motility and flow were measured using a combined manometry-impedance catheter and small intestinal transit using scintigraphy. In both groups, duodenal pressure waves and antegrade flow events were fewer, and transit was slower with exenatide, as were the areas under the curves for serum 3-OMG and blood glucose concentrations. Insulin concentrations were initially lower with exenatide than with saline and subsequently higher. Nausea was greater in both groups with exenatide, but suppression of small intestinal motility and flow was observed even in subjects with little or no nausea. The inhibition of small intestinal motor function represents a novel mechanism by which exenatide can attenuate postprandial glycemia.

3. Prospective Association of GLUL rs10911021 With Cardiovascular Morbidity and Mortality Among Individuals With Type 2 Diabetes: The Look AHEAD Study.

作者: .
来源: Diabetes. 2016年65卷1期297-302页
Genetic studies have identified a glutamate-ammonia ligase gene (GLUL) polymorphism associated with cardiovascular disease morbidity and mortality among people with type 2 diabetes (T2D). We sought to determine whether GLUL rs10911021 is associated prospectively with adjudicated cardiovascular composite end points among overweight/obese individuals with T2D and whether a lifestyle intervention resulting in weight loss could diminish this association. Look AHEAD is a randomized, controlled trial to determine the effects of intensive lifestyle intervention (ILI), including weight loss and physical activity, relative to diabetes support and education, on cardiovascular outcomes. Look AHEAD participants included in this report were 3,845 overweight/obese individuals with T2D who provided consent for genetic analyses. Over a median of 9.6 years of follow-up, the risk (C) allele for GLUL rs10911021 was significantly associated with the primary composite end point of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for angina among individuals with no history of cardiovascular disease (CVD) at baseline using additive genetic models (hazard ratio 1.17 [95% CI 1.01-1.36]; P = 0.032). Results appeared more consistent in recessive models and among individuals with no known history of CVD at baseline; ILI did not alter these associations. These results extend the association of GLUL rs10911021 to incident CVD morbidity and mortality in the setting of T2D.

4. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults.

作者: Matthew L Johnson.;Klaus Distelmaier.;Ian R Lanza.;Brian A Irving.;Matthew M Robinson.;Adam R Konopka.;Gerald I Shulman.;K Sreekumaran Nair.
来源: Diabetes. 2016年65卷1期74-84页
Caloric restriction (CR) improves insulin sensitivity and reduces the incidence of diabetes in obese individuals. The underlying mechanisms whereby CR improves insulin sensitivity are not clear. We evaluated the effect of 16 weeks of CR on whole-body insulin sensitivity by pancreatic clamp before and after CR in 11 obese participants (BMI = 35 kg/m(2)) compared with 9 matched control subjects (BMI = 34 kg/m(2)). Compared with the control subjects, CR increased the glucose infusion rate needed to maintain euglycemia during hyperinsulinemia, indicating enhancement of peripheral insulin sensitivity. This improvement in insulin sensitivity was not accompanied by changes in skeletal muscle mitochondrial oxidative capacity or oxidant emissions, nor were there changes in skeletal muscle ceramide, diacylglycerol, or amino acid metabolite levels. However, CR lowered insulin-stimulated thioredoxin-interacting protein (TXNIP) levels and enhanced nonoxidative glucose disposal. These results support a role for TXNIP in mediating the improvement in peripheral insulin sensitivity after CR.

5. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery.

作者: Paul M Coen.;Elizabeth V Menshikova.;Giovanna Distefano.;Donghai Zheng.;Charles J Tanner.;Robert A Standley.;Nicole L Helbling.;Gabriel S Dubis.;Vladimir B Ritov.;Hui Xie.;Marisa E Desimone.;Steven R Smith.;Maja Stefanovic-Racic.;Frederico G S Toledo.;Joseph A Houmard.;Bret H Goodpaster.
来源: Diabetes. 2015年64卷11期3737-50页
Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.

6. Genetic Predisposition to Weight Loss and Regain With Lifestyle Intervention: Analyses From the Diabetes Prevention Program and the Look AHEAD Randomized Controlled Trials.

作者: George D Papandonatos.;Qing Pan.;Nicholas M Pajewski.;Linda M Delahanty.;Inga Peter.;Bahar Erar.;Shafqat Ahmad.;Maegan Harden.;Ling Chen.;Pierre Fontanillas.; .;Lynne E Wagenknecht.;Steven E Kahn.;Rena R Wing.;Kathleen A Jablonski.;Gordon S Huggins.;William C Knowler.;Jose C Florez.;Jeanne M McCaffery.;Paul W Franks.; .
来源: Diabetes. 2015年64卷12期4312-21页
Clinically relevant weight loss is achievable through lifestyle modification, but unintentional weight regain is common. We investigated whether recently discovered genetic variants affect weight loss and/or weight regain during behavioral intervention. Participants at high-risk of type 2 diabetes (Diabetes Prevention Program [DPP]; N = 917/907 intervention/comparison) or with type 2 diabetes (Look AHEAD [Action for Health in Diabetes]; N = 2,014/1,892 intervention/comparison) were from two parallel arm (lifestyle vs. comparison) randomized controlled trials. The associations of 91 established obesity-predisposing loci with weight loss across 4 years and with weight regain across years 2-4 after a minimum of 3% weight loss were tested. Each copy of the minor G allele of MTIF3 rs1885988 was consistently associated with greater weight loss following lifestyle intervention over 4 years across the DPP and Look AHEAD. No such effect was observed across comparison arms, leading to a nominally significant single nucleotide polymorphism×treatment interaction (P = 4.3 × 10(-3)). However, this effect was not significant at a study-wise significance level (Bonferroni threshold P < 5.8 × 10(-4)). Most obesity-predisposing gene variants were not associated with weight loss or regain within the DPP and Look AHEAD trials, directly or via interactions with lifestyle.

7. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects.

作者: Christophe Noll.;Margaret Kunach.;Frédérique Frisch.;Lucie Bouffard.;Stéphanie Dubreuil.;Farrah Jean-Denis.;Serge Phoenix.;Stephen C Cunnane.;Brigitte Guérin.;Eric E Turcotte.;André C Carpentier.
来源: Diabetes. 2015年64卷11期3690-9页
Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.

8. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

作者: Giuseppe Daniele.;Patricia Iozzo.;Marjorie Molina-Carrion.;Jack Lancaster.;Demetrio Ciociaro.;Eugenio Cersosimo.;Devjit Tripathy.;Curtis Triplitt.;Peter Fox.;Nicolas Musi.;Ralph DeFronzo.;Amalia Gastaldelli.
来源: Diabetes. 2015年64卷10期3406-12页
Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.

9. Preserved Insulin Secretory Capacity and Weight Loss Are the Predominant Predictors of Glycemic Control in Patients With Type 2 Diabetes Randomized to Roux-en-Y Gastric Bypass.

作者: Kim T Nguyen.;Charles J Billington.;Adrian Vella.;Qi Wang.;Leaque Ahmed.;John P Bantle.;Marc Bessler.;John E Connett.;William B Inabnet.;Avis Thomas.;Sayeed Ikramuddin.;Judith Korner.
来源: Diabetes. 2015年64卷9期3104-10页
Improvement in type 2 diabetes after Roux-en-Y gastric bypass (RYGB) has been attributed partly to weight loss, but mechanisms beyond weight loss remain unclear. We performed an ancillary study to the Diabetes Surgery Study to assess changes in incretins, insulin sensitivity, and secretion 1 year after randomization to lifestyle modification and intensive medical management (LS/IMM) alone (n = 34) or in conjunction with RYGB (n = 34). The RYGB group lost more weight and had greater improvement in HbA1c. Fasting glucose was lower after RYGB than after LS/IMM, although the glucose area under the curve decreased comparably for both groups. Insulin sensitivity increased in both groups. Insulin secretion was unchanged after LS/IMM but decreased after RYGB, except for a rapid increase during the first 30 min after meal ingestion. Glucagon-like peptide 1 (GLP-1) was substantially increased after RYGB, while gastric inhibitory polypeptide and glucagon decreased. Lower HbA1c was most strongly correlated with the percentage of weight loss for both groups. At baseline, a greater C-peptide index and 90-min postprandial C-peptide level were predictive of lower HbA1c at 1 year after RYGB. β-Cell glucose sensitivity, which improved only after RYGB, and improved disposition index were associated with lower HbA1c in both groups, independent of weight loss. Weight loss and preserved β-cell function both predominantly determine the greatest glycemic benefit after RYGB.

10. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis.

作者: Asem H Ali.;Manpreet Mundi.;Christina Koutsari.;David A Bernlohr.;Michael D Jensen.
来源: Diabetes. 2015年64卷8期2828-35页
Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-(13)C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L(-1) (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min(-1) (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min(-1), respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway.

11. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans.

作者: Juraj Koska.;Michelle Sands.;Camelia Burciu.;Karen M D'Souza.;Kalyani Raravikar.;James Liu.;Seth Truran.;Daniel A Franco.;Eric A Schwartz.;Dawn C Schwenke.;David D'Alessio.;Raymond Q Migrino.;Peter D Reaven.
来源: Diabetes. 2015年64卷7期2624-35页
GLP-1 receptor (GLP-1R) agonists may improve endothelial function (EF) via metabolic improvement and direct vascular action. The current study determined the effect of GLP-1R agonist exenatide on postprandial EF in type 2 diabetes and the mechanisms underlying GLP-1R agonist-mediated vasodilation. Two crossover studies were conducted: 36 participants with type 2 diabetes received subcutaneous exenatide or placebo for 11 days and EF, and glucose and lipid responses to breakfast and lunch were determined; and 32 participants with impaired glucose tolerance (IGT) or diet-controlled type 2 diabetes had EF measured before and after intravenous exenatide, with or without the GLP-1R antagonist exendin-9. Mechanisms of GLP-1R agonist action were studied ex vivo on human subcutaneous adipose tissue arterioles and endothelial cells. Subcutaneous exenatide increased postprandial EF independent of reductions in plasma glucose and triglycerides. Intravenous exenatide increased fasting EF, and exendin-9 abolished this effect. Exenatide elicited eNOS activation and NO production in endothelial cells, and induced dose-dependent vasorelaxation and reduced high-glucose or lipid-induced endothelial dysfunction in arterioles ex vivo. These effects were reduced with AMPK inhibition. In conclusion, exenatide augmented postprandial EF in subjects with diabetes and prevented high-glucose and lipid-induced endothelial dysfunction in human arterioles. These effects were largely direct, via GLP-1R and AMPK activation.

12. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training.

作者: Adam R Konopka.;Albert Asante.;Ian R Lanza.;Matthew M Robinson.;Matthew L Johnson.;Chiara Dalla Man.;Claudio Cobelli.;Mark H Amols.;Brian A Irving.;K S Nair.
来源: Diabetes. 2015年64卷6期2104-15页
The notion that mitochondria contribute to obesity-induced insulin resistance is highly debated. Therefore, we determined whether obese (BMI 33 kg/m(2)), insulin-resistant women with polycystic ovary syndrome had aberrant skeletal muscle mitochondrial physiology compared with lean, insulin-sensitive women (BMI 23 kg/m(2)). Maximal whole-body and mitochondrial oxygen consumption were not different between obese and lean women. However, obese women exhibited lower mitochondrial coupling and phosphorylation efficiency and elevated mitochondrial H2O2 (mtH2O2) emissions compared with lean women. We further evaluated the impact of 12 weeks of aerobic exercise on obesity-related impairments in insulin sensitivity and mitochondrial energetics in the fasted state and after a high-fat mixed meal. Exercise training reversed obesity-related mitochondrial derangements as evidenced by enhanced mitochondrial bioenergetics efficiency and decreased mtH2O2 production. A concomitant increase in catalase antioxidant activity and decreased DNA oxidative damage indicate improved cellular redox status and a potential mechanism contributing to improved insulin sensitivity. mtH2O2 emissions were refractory to a high-fat meal at baseline, but after exercise, mtH2O2 emissions increased after the meal, which resembles previous findings in lean individuals. We demonstrate that obese women exhibit impaired mitochondrial bioenergetics in the form of decreased efficiency and impaired mtH2O2 emissions, while exercise effectively restores mitochondrial physiology toward that of lean, insulin-sensitive individuals.

13. Diazoxide improves hormonal counterregulatory responses to acute hypoglycemia in long-standing type 1 diabetes.

作者: Priya S George.;Roger Tavendale.;Colin N A Palmer.;Rory J McCrimmon.
来源: Diabetes. 2015年64卷6期2234-41页
Individuals with long-standing type 1 diabetes (T1D) are at increased risk of severe hypoglycemia secondary to impairments in normal glucose counterregulatory responses (CRRs). Strategies to prevent hypoglycemia are often ineffective, highlighting the need for novel therapies. ATP-sensitive potassium (KATP) channels within the hypothalamus are thought to be integral to hypoglycemia detection and initiation of CRRs; however, to date this has not been confirmed in human subjects. In this study, we examined whether the KATP channel-activator diazoxide was able to amplify the CRR to hypoglycemia in T1D subjects with long-duration diabetes. A randomized, double-blind, placebo-controlled cross-over trial using a stepped hyperinsulinemic hypoglycemia clamp was performed in 12 T1D subjects with prior ingestion of diazoxide (7 mg/kg) or placebo. Diazoxide resulted in a 37% increase in plasma levels of epinephrine and a 44% increase in plasma norepinephrine during hypoglycemia compared with placebo. In addition, a subgroup analysis revealed that the response to oral diazoxide was blunted in participants with E23K polymorphism in the KATP channel. This study has therefore shown for the first time the potential utility of KATP channel activators to improve CRRs to hypoglycemia in individuals with T1D and, moreover, that it may be possible to stratify therapeutic approaches by genotype.

14. Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men.

作者: Francis B Stephens.;Carolyn Chee.;Benjamin T Wall.;Andrew J Murton.;Chris E Shannon.;Luc J C van Loon.;Kostas Tsintzas.
来源: Diabetes. 2015年64卷5期1615-20页
The ability to maintain skeletal muscle mass appears to be impaired in insulin-resistant conditions, such as type 2 diabetes, that are characterized by muscle lipid accumulation. The current study investigated the effect of acutely increasing lipid availability on muscle protein synthesis. Seven healthy young male volunteers underwent a 7-h intravenous infusion of l-[ring-(2)H5]phenylalanine on two randomized occasions combined with 0.9% saline or 10% Intralipid at 100 mL/h. After a 4-h "basal" period, a 21-g bolus of amino acids was administered and a 3-h hyperinsulinemic-euglycemic clamp was commenced ("fed" period). Muscle biopsy specimens were obtained from the vastus lateralis at 1.5, 4, and 7 h. Lipid infusion reduced fed whole-body glucose disposal by 20%. Furthermore, whereas the mixed muscle fractional synthetic rate increased from the basal to the fed period during saline infusion by 2.2-fold, no change occurred during lipid infusion, despite similar circulating insulin and leucine concentrations. This "anabolic resistance" to insulin and amino acids with lipid infusion was associated with a complete suppression of muscle 4E-BP1 phosphorylation. We propose that increased muscle lipid availability may contribute to anabolic resistance in insulin-resistant conditions by impairing translation initiation.

15. Protein Ingestion Induces Muscle Insulin Resistance Independent of Leucine-Mediated mTOR Activation.

作者: Gordon I Smith.;Jun Yoshino.;Kelly L Stromsdorfer.;Seth J Klein.;Faidon Magkos.;Dominic N Reeds.;Samuel Klein.;Bettina Mittendorfer.
来源: Diabetes. 2015年64卷5期1555-63页
Increased plasma branched-chain amino acid concentrations are associated with insulin resistance, and intravenous amino acid infusion blunts insulin-mediated glucose disposal. We tested the hypothesis that protein ingestion impairs insulin-mediated glucose disposal by leucine-mediated mTOR signaling, which can inhibit AKT. We measured glucose disposal and muscle p-mTOR(Ser2448), p-AKT(Ser473), and p-AKT(Thr308) in 22 women during a hyperinsulinemic-euglycemic clamp procedure with and without concomitant ingestion of whey protein (0.6 g/kg fat-free mass; n = 11) or leucine that matched the amount given with whey protein (n = 11). Both whey protein and leucine ingestion raised plasma leucine concentration by approximately twofold and muscle p-mTOR(Ser2448) by ∼30% above the values observed in the control (no amino acid ingestion) studies; p-AKT(Ser473) and p-AKT(Thr308) were not affected by whey protein or leucine ingestion. Whey protein ingestion decreased insulin-mediated glucose disposal (median 38.8 [quartiles 30.8, 61.8] vs. 51.9 [41.0, 77.3] µmol glucose/µU insulin · mL(-1) · min(-1); P < 0.01), whereas ingestion of leucine did not (52.3 [43.3, 65.4] vs. 52.3 [43.9, 73.2]). These results indicate that 1) protein ingestion causes insulin resistance and could be an important regulator of postprandial glucose homeostasis and 2) the insulin-desensitizing effect of protein ingestion is not due to inhibition of AKT by leucine-mediated mTOR signaling.

16. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans.

作者: Tineke van de Weijer.;Esther Phielix.;Lena Bilet.;Evan G Williams.;Eduardo R Ropelle.;Alessandra Bierwagen.;Roshan Livingstone.;Peter Nowotny.;Lauren M Sparks.;Sabina Paglialunga.;Julia Szendroedi.;Bas Havekes.;Norman Moullan.;Eija Pirinen.;Jong-Hee Hwang.;Vera B Schrauwen-Hinderling.;Matthijs K C Hesselink.;Johan Auwerx.;Michael Roden.;Patrick Schrauwen.
来源: Diabetes. 2015年64卷4期1193-201页
Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans.

17. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations.

作者: Satya Dash.;Changting Xiao.;Cecilia Morgantini.;Khajag Koulajian.;Gary F Lewis.
来源: Diabetes. 2015年64卷3期766-74页
Intranasal insulin (INI) has been shown to modulate food intake and food-related activity in the central nervous system in humans. Because INI increases insulin concentration in the cerebrospinal fluid, these effects have been postulated to be mediated via insulin action in the brain, although peripheral effects of insulin cannot be excluded. INI has been shown to lower plasma glucose in some studies, but whether it regulates endogenous glucose production (EGP) is not known. To assess the role of INI in the regulation of EGP, eight healthy men were studied in a single-blind, crossover study with two randomized visits (one with 40 IU INI and the other with intranasal placebo [INP] administration) 4 weeks apart. EGP was assessed under conditions of an arterial pancreatic clamp, with a primed, constant infusion of deuterated glucose and infusion of 20% dextrose as required to maintain euglycemia. Between 180 and 360 min after administration, INI significantly suppressed EGP by 35.6% compared with INP, despite similar venous insulin concentrations. In conclusion, INI lowers EGP in humans compared with INP, despite similar venous insulin concentrations. INI may therefore be of value in treating excess liver glucose production in diabetes.

18. Central nervous insulin administration does not potentiate the acute glucoregulatory impact of concurrent mild hyperinsulinemia.

作者: Volker Ott.;Hendrik Lehnert.;Josefine Staub.;Kathrin Wönne.;Jan Born.;Manfred Hallschmid.
来源: Diabetes. 2015年64卷3期760-5页
Experiments in rodents suggest that hypothalamic insulin signaling essentially contributes to the acute control of peripheral glucose homeostasis. Against this background, we investigated in healthy humans whether intranasal (IN) insulin, which is known to effectively reach the brain compartment, impacts systemic glucose metabolism. Twenty overnight-fasted healthy, normal-weight men were IN administered 210 and 420 international units [IU] (10 and 20 IU every 15 min) of the insulin analog aspart (ins-asp) and placebo, respectively, during experimental sessions lasting 6 h. The use of ins-asp rather than human insulin enabled us to disentangle exogenous and endogenous insulin kinetics. IN insulin dose-dependently decreased plasma glucose concentrations while reducing C-peptide and attenuating endogenous insulin levels. However, we also observed a slight dose-dependent permeation of ins-asp into the circulation. In control experiments mimicking the systemic but not the central nervous uptake of the IN 210 IU dose via intravenous infusion of ins-asp at a dose of 0.12 IU/kg/24 h (n = 10), we obtained essentially identical effects on fasting plasma glucose concentrations. This pattern indicates that sustained IN insulin administration to the human brain to enhance central nervous insulin signaling does not acutely alter systemic glucose homeostasis beyond effects accounted for by concurrent mild hyperinsulinemia.

19. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes.

作者: Hui Zhang.;Ying Hao.;Bradley Manor.;Peter Novak.;William Milberg.;Jue Zhang.;Jing Fang.;Vera Novak.
来源: Diabetes. 2015年64卷3期1025-34页
Type 2 diabetes mellitus (T2DM) alters brain function and manifests as brain atrophy. Intranasal insulin has emerged as a promising intervention for treatment of cognitive impairment. We evaluated the acute effects of intranasal insulin on resting-state brain functional connectivity in older adults with T2DM. This proof-of-concept, randomized, double-blind, placebo-controlled study evaluated the effects of a single 40 IU dose of insulin or saline in 14 diabetic and 14 control subjects. Resting-state functional connectivity between the hippocampal region and default mode network (DMN) was quantified using functional MRI (fMRI) at 3Tesla. Following insulin administration, diabetic patients demonstrated increased resting-state connectivity between the hippocampal regions and the medial frontal cortex (MFC) as compared with placebo (cluster size: right, P = 0.03) and other DMN regions. On placebo, the diabetes group had lower connectivity between the hippocampal region and the MFC as compared with control subjects (cluster size: right, P = 0.02), but on insulin, MFC connectivity was similar to control subjects. Resting-state connectivity correlated with cognitive performance. A single dose of intranasal insulin increases resting-state functional connectivity between the hippocampal regions and multiple DMN regions in older adults with T2DM. Intranasal insulin administration may modify functional connectivity among brain regions regulating memory and complex cognitive behaviors.

20. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells.

作者: Per-Ola Carlsson.;Erik Schwarcz.;Olle Korsgren.;Katarina Le Blanc.
来源: Diabetes. 2015年64卷2期587-92页
The retention of endogenous insulin secretion in type 1 diabetes is an attractive clinical goal, which opens possibilities for long-term restoration of glucose metabolism. Mesenchymal stromal cells (MSCs) constitute, based on animal studies, a promising interventional strategy for the disease. This prospective clinical study describes the translation of this cellular intervention strategy to patients with recent-onset type 1 diabetes. Twenty adult patients with newly diagnosed type 1 diabetes were enrolled and randomized to MSC treatment or to the control group. Residual β-cell function was analyzed as C-peptide concentrations in blood in response to a mixed-meal tolerance test (MMTT) at 1-year follow-up. In contrast to the patients in the control arm, who showed loss in both C-peptide peak values and C-peptide when calculated as area under the curve during the 1st year, these responses were preserved or even increased in the MSC-treated patients. Importantly, no side effects of MSC treatment were observed. We conclude that autologous MSC treatment in new-onset type 1 diabetes constitutes a safe and promising strategy to intervene in disease progression and preserve β-cell function.
共有 339 条符合本次的查询结果, 用时 2.0353296 秒