81. Brca1 deficiency causes bone marrow failure and spontaneous hematologic malignancies in mice.
作者: Aparna Vasanthakumar.;Stephen Arnovitz.;Rafael Marquez.;Janet Lepore.;George Rafidi.;Anase Asom.;Madison Weatherly.;Elizabeth M Davis.;Barbara Neistadt.;Robert Duszynski.;James W Vardiman.;Michelle M Le Beau.;Lucy A Godley.;Jane E Churpek.
来源: Blood. 2016年127卷3期310-3页
BRCA1 is critical for maintenance of genomic stability and interacts directly with several proteins that regulate hematopoietic stem cell function and are part of the Fanconi anemia (FA) double-strand break DNA repair pathway. The effects of complete BRCA1 deficiency on bone marrow (BM) function are unknown. To test the hypothesis that Brca1 is essential in hematopoiesis, we developed a conditional mouse model with Mx1-Cre-mediated Brca1 deletion. Mice lacking Brca1 in the BM have baseline cytopenias and develop spontaneous bone marrow failure or diverse hematologic malignancies by 6 months of age. Brca1(-/-) BM cells have a reduced capacity to form hematopoietic colonies in vitro and to reconstitute hematopoiesis in irradiated recipients, consistent with a hematopoietic progenitor functional defect. Brca1(-/-) BM cells also show FA-like hypersensitivity to the DNA crosslinking agent mitomycin C, and karyotypes feature genomic instability. Taken together, our results show that loss of Brca1 in murine BM causes hematopoietic defects similar to those seen in people with FA, which provides strong evidence that Brca1 is critical for normal hematopoiesis and that Brca1 is a bona fide FA-like gene.
82. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome.
作者: Sophia R Balderman.;Allison J Li.;Corey M Hoffman.;Benjamin J Frisch.;Alexandra N Goodman.;Mark W LaMere.;Mary A Georger.;Andrew G Evans.;Jane L Liesveld.;Michael W Becker.;Laura M Calvi.
来源: Blood. 2016年127卷5期616-25页
In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival.
83. A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes.
作者: Jean M Watermeyer.;Victoria L Hale.;Fiona Hackett.;Daniel K Clare.;Erin E Cutts.;Ioannis Vakonakis.;Roland A Fleck.;Michael J Blackman.;Helen R Saibil.
来源: Blood. 2016年127卷3期343-51页
Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.
92. CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes.
作者: Nanyan Zhang.;Huiying Zhi.;Brian R Curtis.;Sridhar Rao.;Chintan Jobaliya.;Mortimer Poncz.;Deborah L French.;Peter J Newman.
来源: Blood. 2016年127卷6期675-80页
Human platelet alloantigens (HPAs) reside on functionally important platelet membrane glycoproteins and are caused by single nucleotide polymorphisms in the genes that encode them. Antibodies that form against HPAs are responsible for several clinically important alloimmune bleeding disorders, including fetal and neonatal alloimmune thrombocytopenia and posttransfusion purpura. The HPA-1a/HPA-1b alloantigen system, also known as the Pl(A1)/Pl(A2) polymorphism, is the most frequently implicated HPA among whites, and a single Leu33Pro amino acid polymorphism within the integrin β3 subunit is responsible for generating the HPA-1a/HPA-1b alloantigenic epitopes. HPA-1b/b platelets, like those bearing other low-frequency platelet-specific alloantigens, are relatively rare in the population and difficult to obtain for purposes of transfusion therapy and diagnostic testing. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) gene-editing technology to transform Leu33 (+) megakaryocytelike DAMI cells and induced pluripotent stem cells (iPSCs) to the Pro33 allotype. CD41(+) megakaryocyte progenitors derived from these cells expressed the HPA-1b (Pl(A2)) alloantigenic epitope, as reported by diagnostic NciI restriction enzyme digestion, DNA sequencing, and western blot analysis using HPA-1b-specific human maternal alloantisera. Application of CRISPR/Cas9 technology to genetically edit this and other clinically-important HPAs holds great potential for production of designer platelets for diagnostic, investigative, and, ultimately, therapeutic use.
93. Apelin: an antithrombotic factor that inhibits platelet function.
作者: Frédéric Adam.;Abdel-Majid Khatib.;Jose Javier Lopez.;Camille Vatier.;Sabrina Turpin.;Adeline Muscat.;Fabienne Soulet.;Anne Aries.;Isaac Jardin.;Régis Bobe.;Alain Stepanian.;Dominique de Prost.;Cédric Dray.;Juan Antonio Rosado.;Philippe Valet.;Bruno Feve.;Geraldine Siegfried.
来源: Blood. 2016年127卷7期908-20页
Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.
94. Panobinostat plus bortezomib and dexamethasone in previously treated multiple myeloma: outcomes by prior treatment.
作者: Paul G Richardson.;Vânia T M Hungria.;Sung-Soo Yoon.;Meral Beksac.;Meletios Athanasios Dimopoulos.;Ashraf Elghandour.;Wieslaw W Jedrzejczak.;Andreas Guenther.;Thanyaphong Na Nakorn.;Noppadol Siritanaratkul.;Robert L Schlossman.;Jian Hou.;Philippe Moreau.;Sagar Lonial.;Jae Hoon Lee.;Hermann Einsele.;Monika Sopala.;Bourras-Rezki Bengoudifa.;Claudia Corrado.;Florence Binlich.;Jesús F San-Miguel.
来源: Blood. 2016年127卷6期713-21页
Panobinostat is a potent pan-deacetylase inhibitor that affects the growth and survival of multiple myeloma (MM) cells through alteration of epigenetic mechanisms and protein metabolism. Panobinostat plus bortezomib and dexamethasone (PAN-BTZ-Dex) led to a significant increase in progression-free survival (PFS) vs placebo plus bortezomib and dexamethasone (Pbo-BTZ-Dex) in patients with relapsed or relapsed and refractory MM in the phase 3 PANORAMA 1 trial. This subgroup analysis evaluated outcomes in patients in the PANORAMA 1 trial based on prior treatment: a prior immunomodulatory drug (IMiD; n = 485), prior bortezomib plus an IMiD (n = 193), and ≥2 prior regimens including bortezomib and an IMiD (n = 147). Median PFS with PAN-BTZ-Dex vs Pbo-BTZ-Dex across subgroups was as follows: prior IMiD (12.3 vs 7.4 months; hazard ratio [HR], 0.54; 95% confidence interval [CI], 0.43-0.68), prior bortezomib plus IMiD (10.6 vs 5.8 months; HR, 0.52; 95% CI, 0.36-0.76), and ≥2 prior regimens including bortezomib and an IMiD (12.5 vs 4.7 months; HR, 0.47; 95% CI, 0.31-0.72). Common grade 3/4 adverse events and laboratory abnormalities in patients who received PAN-BTZ-Dex across the prior treatment groups included thrombocytopenia, lymphopenia, neutropenia, diarrhea, and asthenia/fatigue. Incidence of on-treatment deaths among patients who received prior bortezomib and an IMiD (regardless of number of prior regimens) was similar between treatment arms. This analysis demonstrated a clear PFS benefit of 7.8 months with PAN-BTZ-Dex among patients who received ≥2 prior regimens including bortezomib and an IMiD, a population with limited treatment options and poorer prognosis. This trial was registered at www.clinicaltrials.gov as #NCT01023308.
95. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML.
作者: Terrence N Wong.;Christopher A Miller.;Jeffery M Klco.;Allegra Petti.;Ryan Demeter.;Nichole M Helton.;Tiandao Li.;Robert S Fulton.;Sharon E Heath.;Elaine R Mardis.;Peter Westervelt.;John F DiPersio.;Matthew J Walter.;John S Welch.;Timothy A Graubert.;Richard K Wilson.;Timothy J Ley.;Daniel C Link.
来源: Blood. 2016年127卷7期893-7页
There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy.
96. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma.
作者: Niels W C J van de Donk.;Philippe Moreau.;Torben Plesner.;Antonio Palumbo.;Francesca Gay.;Jacob P Laubach.;Fabio Malavasi.;Hervé Avet-Loiseau.;Maria-Victoria Mateos.;Pieter Sonneveld.;Henk M Lokhorst.;Paul G Richardson.
来源: Blood. 2016年127卷6期681-95页
Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and preliminary results from studies with relapsed/refractory patients have shown enhanced therapeutic efficacy when daratumumab and isatuximab are combined with other agents. Furthermore, although elotuzumab (anti-SLAMF7) has no single agent activity in advanced MM, randomized trials in relapsed/refractory MM have demonstrated significantly improved progression-free survival when elotuzumab is added to lenalidomide-dexamethasone or bortezomib-dexamethasone. Importantly, there has been no significant additive toxicity when these monoclonal antibodies are combined with other anti-MM agents, other than infusion-related reactions specific to the therapeutic antibody. Prevention and management of infusion reactions is important to avoid drug discontinuation, which may in turn lead to reduced efficacy of anti-MM therapy. Therapeutic antibodies interfere with several laboratory tests. First, interference of therapeutic antibodies with immunofixation and serum protein electrophoresis assays may lead to underestimation of complete response. Strategies to mitigate interference, based on shifting the therapeutic antibody band, are in development. Furthermore, daratumumab, and probably also other CD38-targeting antibodies, interfere with blood compatibility testing and thereby complicate the safe release of blood products. Neutralization of the therapeutic CD38 antibody or CD38 denaturation on reagent red blood cells mitigates daratumumab interference with transfusion laboratory serologic tests. Finally, therapeutic antibodies may complicate flow cytometric evaluation of normal and neoplastic plasma cells, since the therapeutic antibody can affect the availability of the epitope for binding of commercially available diagnostic antibodies.
97. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction.
作者: Sagar Uttarkar.;Emilie Dassé.;Anna Coulibaly.;Simone Steinmann.;Anke Jakobs.;Caroline Schomburg.;Amke Trentmann.;Joachim Jose.;Peter Schlenke.;Wolfgang E Berdel.;Thomas J Schmidt.;Carsten Müller-Tidow.;Jon Frampton.;Karl-Heinz Klempnauer.
来源: Blood. 2016年127卷9期1173-82页
The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.
98. Blood at 70: its roots in the history of hematology and its birth.
This year we celebrate Blood's 70th year of publication. Created from the partnership of the book publisher Henry M. Stratton and the prominent hematologist Dr William Dameshek of Tufts School of Medicine, Blood has published many papers describing major advances in the science and clinical practice of hematology. Blood's founding antedated that of the American Society of Hematology (ASH) by more than 11 years and Stratton and Dameshek helped galvanize support for the creation of ASH. In this review, I place the birth of Blood in the context of the history of hematology before 1946, emphasizing the American experience from which it emerged, and focusing on research conducted during World War II. I also provide a few milestones along Blood's 70 years of publication, including: the growth in Blood's publications, the evolution of its appearance, the countries of submission of Blood papers, current subscriptions to Blood, and the evolution of topics reported in Blood's papers. The latter provides a snapshot of the evolution of hematology as a scientific and clinical discipline and the introduction of new technology to study blood and bone marrow. Detailed descriptions of the landmark discoveries reported in Blood will appear in later papers celebrating Blood's birthday authored by past Editors-in-Chief.
99. Transfusion of fresher vs older red blood cells in hospitalized patients: a systematic review and meta-analysis.
作者: Paul E Alexander.;Rebecca Barty.;Yutong Fei.;Per Olav Vandvik.;Menaka Pai.;Reed A C Siemieniuk.;Nancy M Heddle.;Neil Blumberg.;Shelley L McLeod.;Jianping Liu.;John W Eikelboom.;Gordon H Guyatt.
来源: Blood. 2016年127卷4期400-10页
The impact of transfusing fresher vs older red blood cells (RBCs) on patient-important outcomes remains controversial. Two recently published large trials have provided new evidence. We summarized results of randomized trials evaluating the impact of the age of transfused RBCs. We searched MEDLINE, EMBASE, CINAHL, the Cochrane Database for Systematic Reviews, and Cochrane CENTRAL for randomized controlled trials enrolling patients who were transfused fresher vs older RBCs and reported outcomes of death, adverse events, and infection. Independently and in duplicate, reviewers determined eligibility, risk of bias, and abstracted data. We conducted random effects meta-analyses and rated certainty (quality or confidence) of evidence using the GRADE approach. Of 12 trials that enrolled 5229 participants, 6 compared fresher RBCs with older RBCs and 6 compared fresher RBCs with current standard practice. There was little or no impact of fresher vs older RBCs on mortality (relative risk [RR], 1.04; 95% confidence interval [CI], 0.94-1.14; P = .45; I(2) = 0%, moderate certainty evidence) or on adverse events (RR, 1.02; 95% CI, 0.91-1.14; P = .74; I(2) = 0%, low certainty evidence). Fresher RBCs appeared to increase the risk of nosocomial infection (RR, 1.09; 95% CI, 1.00-1.18; P = .04; I(2) = 0%, risk difference 4.3%, low certainty evidence). Current evidence provides moderate certainty that use of fresher RBCs does not influence mortality, and low certainty that it does not influence adverse events but could possibly increase infection rates. The existing evidence provides no support for changing practices toward fresher RBC transfusion.
100. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences.
作者: Shiraazkhan Abdul.;Frank W G Leebeek.;Dingeman C Rijken.;Shirley Uitte de Willige.
来源: Blood. 2016年127卷5期538-45页
Human α2-antiplasmin (α2AP, also called α2-plasmin inhibitor) is the main physiological inhibitor of the fibrinolytic enzyme plasmin. α2AP inhibits plasmin on the fibrin clot or in the circulation by forming plasmin-antiplasmin complexes. Severely reduced α2AP levels in hereditary α2AP deficiency may lead to bleeding symptoms, whereas increased α2AP levels have been associated with increased thrombotic risk. α2AP is a very heterogeneous protein. In the circulation, α2AP undergoes both amino terminal (N-terminal) and carboxyl terminal (C-terminal) proteolytic modifications that significantly modify its activities. About 70% of α2AP is cleaved at the N terminus by antiplasmin-cleaving enzyme (or soluble fibroblast activation protein), resulting in a 12-amino-acid residue shorter form. The glutamine residue that serves as a substrate for activated factor XIII becomes more efficient after removal of the N terminus, leading to faster crosslinking of α2AP to fibrin and consequently prolonged clot lysis. In approximately 35% of circulating α2AP, the C terminus is absent. This C terminus contains the binding site for plasmin(ogen), the key component necessary for the rapid and efficient inhibitory mechanism of α2AP. Without its C terminus, α2AP can no longer bind to the lysine binding sites of plasmin(ogen) and is only a kinetically slow plasmin inhibitor. Thus, proteolytic modifications of the N and C termini of α2AP constitute major regulatory mechanisms for the inhibitory function of the protein and may therefore have clinical consequences. This review presents recent findings regarding the main aspects of the natural heterogeneity of α2AP with particular focus on the functional and possible clinical implications.
|