61. In Vivo Platelet Activation and Aspirin Responsiveness in Type 1 Diabetes.
作者: Francesco Zaccardi.;Alessandro Rizzi.;Giovanna Petrucci.;Flavia Ciaffardini.;Luigi Tanese.;Francesca Pagliaccia.;Viviana Cavalca.;Angela Ciminello.;Aida Habib.;Isabella Squellerio.;Paola Rizzo.;Elena Tremoli.;Bianca Rocca.;Dario Pitocco.;Carlo Patrono.
来源: Diabetes. 2016年65卷2期503-9页
Platelet activation is persistently enhanced, and its inhibition by low-dose aspirin is impaired in type 2 diabetes mellitus. We investigated in vivo thromboxane (TX) and prostacyclin (PGI2) biosynthesis and their determinants, as well as aspirin responsiveness, in young adult subjects with type 1 diabetes mellitus (T1DM) without overt cardiovascular disease and stable glycemic control. The biosynthesis of TXA2 was persistently increased in subjects with T1DM versus matched healthy subjects, with females showing higher urinary TX metabolite (TXM) excretion than male subjects with T1DM. Microalbuminuria and urinary 8-iso-PGF2α, an index of in vivo oxidative stress, independently predicted TXM excretion in T1DM. No homeostatic increase in PGI2 biosynthesis was detected. Platelet COX-1 suppression by low-dose aspirin and the kinetics of its recovery after drug withdrawal were similar in patients and control subjects and were unaffected by glucose variability. We conclude that patients with T1DM and stable glycemic control display enhanced platelet activation correlating with female sex and microvascular and oxidative damages. Moreover, aspirin responsiveness is unimpaired in T1DM, suggesting that the metabolic disturbance per se is unrelated to altered pharmacodynamics. The efficacy and safety of low-dose aspirin in T1DM warrant further clinical investigation.
62. Annexin A1 Is a Key Modulator of Mesenchymal Stromal Cell-Mediated Improvements in Islet Function.
作者: Chloe L Rackham.;Andreia E Vargas.;Ross G Hawkes.;Stefan Amisten.;Shanta J Persaud.;Amazon L F Austin.;Aileen J F King.;Peter M Jones.
来源: Diabetes. 2016年65卷1期129-39页
We have previously demonstrated that coculture of islets with mesenchymal stromal cells (MSCs) enhanced islet insulin secretory capacity in vitro, correlating with improved graft function in vivo. To identify factors that contribute to MSC-mediated improvements in islet function, we have used an unbiased quantitative RT-PCR screening approach to identify MSC-derived peptide ligands of G-protein-coupled receptors that are expressed by islets cells. We demonstrated high expression of annexin A1 (ANXA1) mRNA by MSCs and confirmed expression at the protein level in lysates and MSC-conditioned media by Western blot analysis and ELISA. Preculturing islets with exogenous ANXA1 enhanced glucose-stimulated insulin secretion (GSIS), thereby mimicking the beneficial influence of MSC preculture in vitro. Small interfering RNA-mediated knockdown of ANXA1 in MSCs reduced their capacity to potentiate GSIS. MSCs derived from ANXA1(-/-) mice had no functional capacity to enhance GSIS, in contrast to wild-type controls. Preculturing islets with ANXA1 had modest effects on their capacity to regulate blood glucose in streptozotocin-induced diabetic mice, indicating that additional MSC-derived factors are required to fully mimic the beneficial effects of MSC preculture in vivo. These findings demonstrate the feasibility of harnessing the MSC secretome as a defined, noncellular strategy to improve the efficiency of clinical islet transplantation protocols.
63. Hypothalamic POMC Deficiency Improves Glucose Tolerance Despite Insulin Resistance by Increasing Glycosuria.
作者: Kavaljit H Chhabra.;Jessica M Adams.;Brian Fagel.;Daniel D Lam.;Nathan Qi.;Marcelo Rubinstein.;Malcolm J Low.
来源: Diabetes. 2016年65卷3期660-72页
Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however, its role in glucose homeostasis remains less clear. We show that hypothalamic arcuate nucleus (Arc)POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to wild-type littermate controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed alterations in glucose tolerance and glycosuria, whereas, conversely, administration of the antagonist Agouti-related peptide (Agrp) to wild-type mice enhanced glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal GLUT 2 (rGLUT2) but not sodium-glucose cotransporter 2 and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes.
64. High Glucose-Repressed CITED2 Expression Through miR-200b Triggers the Unfolded Protein Response and Endoplasmic Reticulum Stress.
作者: Hui Gu.;Jingwen Yu.;Daoyin Dong.;Qun Zhou.;Jian-Ying Wang.;Shengyun Fang.;Peixin Yang.
来源: Diabetes. 2016年65卷1期149-63页
High glucose in vivo and in vitro induces neural tube defects (NTDs). CITED2 (CBP/p300-interacting transactivator with ED-rich tail 2) is essential for neural tube closure. We explored the regulatory mechanism underlying CITED2 expression and its relationship with miRNA and endoplasmic reticulum (ER) stress. miR-200b levels were increased by maternal diabetes or high glucose in vitro, and this increase was abrogated by transgenic overexpression of superoxide dismutase 1 (SOD1) or an SOD1 mimetic. CITED2 was the target of miR-200b and was downregulated by high glucose. Two miR-200b binding sites in the 3'-untranslated region of the CITED2 mRNA were required for inhibiting CITED2 expression. The miR-200b mimic and a CITED2 knockdown mimicked the stimulative effect of high glucose on unfolded protein response (UPR) and ER stress, whereas the miR-200b inhibitor and CITED2 overexpression abolished high glucose-induced UPR signaling, ER stress, and apoptosis. The ER stress inhibitor, 4-phenylbutyrate, blocked CITED2 knockdown-induced apoptosis. Furthermore, the miR-200b inhibitor reversed high glucose-induced CITED2 downregulation, ER stress, and NTDs in cultured embryos. Thus, we showed a novel function of miR-200b and CITED2 in high glucose-induced UPR and ER stress, suggesting that miR-200b and CITED2 are critical for ER homeostasis and NTD formation in the developing embryo.
65. A SNP in the Immunoregulatory Molecule CTLA-4 Controls mRNA Splicing In Vivo but Does Not Alter Diabetes Susceptibility in the NOD Mouse.
作者: Fabian Jakubczik.;Ken Jones.;Jennifer Nichols.;William Mansfield.;Anne Cooke.;Nick Holmes.
来源: Diabetes. 2016年65卷1期120-8页
CTLA-4 is a critical "checkpoint" regulator in autoimmunity. Variation in CTLA-4 isoform expression has been linked to type 1 diabetes development in human and NOD mouse studies. In the NOD mouse, a causative link between increased expression of the minor isoform ligand-independent CTLA-4 and a reduction in diabetes has become widely accepted. Altered splicing of CTLA-4 has been attributed to a single nucleotide polymorphism (SNP) in Ctla4 exon2 (e2_77A/G). To investigate this link, we have used NOD embryonic stem (ES) cells to generate a novel NOD transgenic line with the 77A/G SNP. This strain phenocopies the increase in splicing toward the liCTLA4 isoform seen in B10 Idd5.1 mice. Crucially, the SNP does not alter the spontaneous incidence of diabetes, the incidence of cyclophosphamide-induced diabetes, or the activation of diabetogenic T-cell receptor transgenic CD4(+) T cells after adoptive transfer. Our results show that one or more of the many other linked genetic variants between the B10 and NOD genome are required for the diabetes protection conferred by Idd5.1. With the NOD mouse model closely mimicking the human disease, our data demonstrate that knock-in transgenic mice on the NOD background can test causative mutations relevant in human diabetes.
66. Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays.
作者: Xiaofang Bian.;Garrick Wallstrom.;Amy Davis.;Jie Wang.;Jin Park.;Andrea Throop.;Jason Steel.;Xiaobo Yu.;Clive Wasserfall.;Desmond Schatz.;Mark Atkinson.;Ji Qiu.;Joshua LaBaer.
来源: Diabetes. 2016年65卷1期285-96页
The rapid rise in the incidence of type 1 diabetes (T1D) suggests the involvement of environmental factors including viral infections. We evaluated the association between viral infections and T1D by profiling antiviral antibodies using a high-throughput immunoproteomics approach in patients with new-onset T1D. We constructed a viral protein array comprising the complete proteomes of seven viruses associated with T1D and open reading frames from other common viruses. Antibody responses to 646 viral antigens were assessed in 42 patients with T1D and 42 age- and sex-matched healthy control subjects (mean age 12.7 years, 50% males). Prevalence of antiviral antibodies agreed with known infection rates for the corresponding virus based on epidemiological studies. Antibody responses to Epstein-Barr virus (EBV) were significantly higher in case than control subjects (odds ratio 6.6; 95% CI 2.0-25.7), whereas the other viruses showed no differences. The EBV and T1D association was significant in both sex and age subgroups (≤12 and >12 years), and there was a trend toward early EBV infections among the case subjects. These results suggest a potential role for EBV in T1D development. We believe our innovative immunoproteomics platform is useful for understanding the role of viral infections in T1D and other disorders where associations between viral infection and disease are unclear.
67. Relationship Between Left Ventricular Structural and Metabolic Remodeling in Type 2 Diabetes.
作者: Eylem Levelt.;Masliza Mahmod.;Stefan K Piechnik.;Rina Ariga.;Jane M Francis.;Christopher T Rodgers.;William T Clarke.;Nikant Sabharwal.;Jurgen E Schneider.;Theodoros D Karamitsos.;Kieran Clarke.;Oliver J Rider.;Stefan Neubauer.
来源: Diabetes. 2016年65卷1期44-52页
Concentric left ventricular (LV) remodeling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodeling in diabetes per se is unclear, but it may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship between myocardial metabolic changes and LV remodeling in T2DM. Forty-six nonhypertensive patients with T2DM and 20 matched control subjects underwent cardiovascular magnetic resonance to assess LV remodeling (LV mass-to-LV end diastolic volume ratio), function, tissue characterization before and after contrast using T1 mapping, and (1)H and (31)P magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine-to-ATP ratio, respectively. When compared with BMI- and blood pressure-matched control subjects, subjects with diabetes were associated with concentric LV remodeling, higher MTG, impaired myocardial energetics, and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodeling and systolic strain. Extracellular volume fraction was unchanged, indicating the absence of fibrosis. In conclusion, cardiac steatosis may contribute to concentric remodeling and contractile dysfunction of the LV in diabetes. Because cardiac steatosis is modifiable, strategies aimed at reducing MTG may be beneficial in reversing concentric remodeling and improving contractile function in the hearts of patients with diabetes.
68. Baroreflex Sensitivity Impairment During Hypoglycemia: Implications for Cardiovascular Control.
作者: Ajay D Rao.;Istvan Bonyhay.;Joel Dankwa.;Maria Baimas-George.;Lindsay Kneen.;Sarah Ballatori.;Roy Freeman.;Gail K Adler.
来源: Diabetes. 2016年65卷1期209-15页
Studies have shown associations between exposure to hypoglycemia and increased mortality, raising the possibility that hypoglycemia has adverse cardiovascular effects. In this study, we determined the acute effects of hypoglycemia on cardiovascular autonomic control. Seventeen healthy volunteers were exposed to experimental hypoglycemia (2.8 mmol/L) for 120 min. Cardiac vagal baroreflex function was assessed using the modified Oxford method before the initiation of the hypoglycemic-hyperinsulinemic clamp protocol and during the last 30 min of hypoglycemia. During hypoglycemia, compared with baseline euglycemic conditions, 1) baroreflex sensitivity decreases significantly (19.2 ± 7.5 vs. 32.9 ± 16.6 ms/mmHg, P < 0.005), 2) the systolic blood pressure threshold for baroreflex activation increases significantly (the baroreflex function shifts to the right; 120 ± 14 vs. 112 ± 12 mmHg, P < 0.005), and 3) the maximum R-R interval response (1,088 ± 132 vs. 1,496 ± 194 ms, P < 0.001) and maximal range of the R-R interval response (414 ± 128 vs. 817 ± 183 ms, P < 0.001) decrease significantly. These findings indicate reduced vagal control and impaired cardiovascular homeostasis during hypoglycemia.
69. Asna1/TRC40 Controls β-Cell Function and Endoplasmic Reticulum Homeostasis by Ensuring Retrograde Transport.
Type 2 diabetes (T2D) is characterized by insulin resistance and β-cell failure. Insulin resistance per se, however, does not provoke overt diabetes as long as compensatory β-cell function is maintained. The increased demand for insulin stresses the β-cell endoplasmic reticulum (ER) and secretory pathway, and ER stress is associated with β-cell failure in T2D. The tail recognition complex (TRC) pathway, including Asna1/TRC40, is implicated in the maintenance of endomembrane trafficking and ER homeostasis. To gain insight into the role of Asna1/TRC40 in maintaining endomembrane homeostasis and β-cell function, we inactivated Asna1 in β-cells of mice. We show that Asna1(β-/-) mice develop hypoinsulinemia, impaired insulin secretion, and glucose intolerance that rapidly progresses to overt diabetes. Loss of Asna1 function leads to perturbed plasma membrane-to-trans Golgi network and Golgi-to-ER retrograde transport as well as to ER stress in β-cells. Of note, pharmacological inhibition of retrograde transport in isolated islets and insulinoma cells mimicked the phenotype of Asna1(β-/-) β-cells and resulted in reduced insulin content and ER stress. These data support a model where Asna1 ensures retrograde transport and, hence, ER and insulin homeostasis in β-cells.
70. American Diabetes Association and JDRF Research Symposium: Diabetes and the Microbiome.
作者: Clay F Semenkovich.;Jayne Danska.;Tamara Darsow.;Jessica L Dunne.;Curtis Huttenhower.;Richard A Insel.;Allison T McElvaine.;Robert E Ratner.;Alan R Shuldiner.;Martin J Blaser.
来源: Diabetes. 2015年64卷12期3967-77页
From 27-29 October 2014, more than 100 people gathered in Chicago, IL, to participate in a research symposium titled "Diabetes and the Microbiome," jointly sponsored by the American Diabetes Association and JDRF. The conference brought together international scholars and trainees from multiple disciplines, including microbiology, bioinformatics, endocrinology, metabolism, and immunology, to share the current understanding of host-microbe interactions and their influences on diabetes and metabolism. Notably, this gathering was the first to assemble specialists with distinct expertise in type 1 diabetes, type 2 diabetes, immunology, and microbiology with the goal of discussing and defining potential pathophysiologies linking the microbiome and diabetes. In addition to reviewing existing evidence in the field, speakers presented their own original research to provide a comprehensive view of the current understanding of the topics under discussion.Presentations and discussions throughout the conference reflected a number of important concepts. The microbiota in any host represent a complex ecosystem with a high degree of interindividual variability. Different microbial communities, comprising bacteria, archaea, viruses, and fungi, occupy separate niches in and on the human body. Individually and collectively, these microbes provide benefits to the host-including nutrient harvest from food and protection against pathogens. They are dynamically regulated by both host genes and the environment, and they critically influence both physiology and lifelong health. The objective of the symposium was to discuss the relationship between the host and the microbiome-the combination of microbiota and their biomolecular environment and ecology-specifically with regard to metabolic and immunological systems and to define the critical research needed to understand and potentially target the microbiome in the prevention and treatment of diabetes. In this report, we present meeting highlights in the following areas: 1) relationships between diabetes and the microbiome, 2) bioinformatic tools, resources, and study design considerations, 3) microbial programming of the immune system, 4) the microbiome and energy balance, 5) interventions, and 6) limitations, unanswered questions, and resource and policy needs.
71. FGF1 Mediates Overnutrition-Induced Compensatory β-Cell Differentiation.
Increased insulin demand resulting from insulin resistance and/or overnutrition induces a compensatory increase in β-cell mass. The physiological factors responsible for the compensation have not been fully characterized. In zebrafish, overnutrition rapidly induces compensatory β-cell differentiation through triggering the release of a paracrine signal from persistently activated β-cells. We identified Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal in a small molecule screen. Fgf1 was confirmed as the overnutrition-induced β-cell differentiation signal, as inactivation of fgf1 abolished the compensatory β-cell differentiation. Furthermore, expression of human FGF1 solely in β-cells in fgf1(-/-) animals rescued the compensatory response, indicating that β-cells can be the source of FGF1. Additionally, constitutive secretion of FGF1 with an exogenous signal peptide increased β-cell number in the absence of overnutrition. These results demonstrate that fgf1 is necessary and FGF1 expression in β-cells is sufficient for the compensatory β-cell differentiation. We further show that FGF1 is secreted during prolonged activation of cultured mammalian β-cells and that endoplasmic reticulum stress acts upstream of FGF1 release. Thus, the recently discovered antidiabetes function of FGF1 may act partially through increasing β-cell differentiation.
72. Protein Biomarkers for Insulin Resistance and Type 2 Diabetes Risk in Two Large Community Cohorts.
作者: Christoph Nowak.;Johan Sundström.;Stefan Gustafsson.;Vilmantas Giedraitis.;Lars Lind.;Erik Ingelsson.;Tove Fall.
来源: Diabetes. 2016年65卷1期276-84页
Insulin resistance (IR) is a precursor of type 2 diabetes (T2D), and improved risk prediction and understanding of the pathogenesis are needed. We used a novel high-throughput 92-protein assay to identify circulating biomarkers for HOMA of IR in two cohorts of community residents without diabetes (n = 1,367) (mean age 73 ± 3.6 years). Adjusted linear regression identified cathepsin D and confirmed six proteins (leptin, renin, interleukin-1 receptor antagonist [IL-1ra], hepatocyte growth factor, fatty acid-binding protein 4, and tissue plasminogen activator [t-PA]) as IR biomarkers. Mendelian randomization analysis indicated a positive causal effect of IR on t-PA concentrations. Two biomarkers, IL-1ra (hazard ratio [HR] 1.28, 95% CI 1.03-1.59) and t-PA (HR 1.30, 1.02-1.65) were associated with incident T2D, and t-PA predicted 5-year transition to hyperglycemia (odds ratio 1.30, 95% CI 1.02-1.65). Additional adjustment for fasting glucose rendered both coefficients insignificant and revealed an association between renin and T2D (HR 0.79, 0.62-0.99). LASSO regression suggested a risk model including IL-1ra, t-PA, and the Framingham Offspring Study T2D score, but prediction improvement was nonsignificant (difference in C-index 0.02, 95% CI -0.08 to 0.12) over the T2D score only. In conclusion, proteomic blood profiling indicated cathepsin D as a new IR biomarker and suggested a causal effect of IR on t-PA.
73. The Metabolic Regulator Histone Deacetylase 9 Contributes to Glucose Homeostasis Abnormality Induced by Hepatitis C Virus Infection.
作者: Jizheng Chen.;Ning Wang.;Mei Dong.;Min Guo.;Yang Zhao.;Zhiyong Zhuo.;Chao Zhang.;Xiumei Chi.;Yu Pan.;Jing Jiang.;Hong Tang.;Junqi Niu.;Dongliang Yang.;Zhong Li.;Xiao Han.;Qian Wang.;Xinwen Chen.
来源: Diabetes. 2015年64卷12期4088-98页
Class IIa histone deacetylases (HDACs), such as HDAC4, HDAC5, and HDAC7, provide critical mechanisms for regulating glucose homeostasis. Here we report that HDAC9, another class IIa HDAC, regulates hepatic gluconeogenesis via deacetylation of a Forkhead box O (FoxO) family transcription factor, FoxO1, together with HDAC3. Specifically, HDAC9 expression can be strongly induced upon hepatitis C virus (HCV) infection. HCV-induced HDAC9 upregulation enhances gluconeogenesis by promoting the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, indicating a major role for HDAC9 in the development of HCV-associated exaggerated gluconeogenic responses. Moreover, HDAC9 expression levels and gluconeogenic activities were elevated in livers from HCV-infected patients and persistent HCV-infected mice, emphasizing the clinical relevance of these results. Our results suggest HDAC9 is involved in glucose metabolism, HCV-induced abnormal glucose homeostasis, and type 2 diabetes.
76. Response to Comments on Nolan et al. Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes 2015;64:673-686.
作者: Christopher J Nolan.;Neil B Ruderman.;Steven E Kahn.;Oluf Pedersen.;Marc Prentki.
来源: Diabetes. 2015年64卷10期e38-9页 77. Comment on Nolan et al. Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes 2015;64:673-686.
作者: Heinrich Taegtmeyer.;Christophe Beauloye.;Romain Harmancey.;Louis Hue.
来源: Diabetes. 2015年64卷10期e37页 78. Comment on Nolan et al. Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes 2015;64:673-686.
作者: Francesco Zaccardi.;David R Webb.;Kamlesh Khunti.;Melanie J Davies.
来源: Diabetes. 2015年64卷10期e35-6页 |