501. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis.
作者: Jacqueline A Koehler.;Laurie L Baggio.;Xiemin Cao.;Tahmid Abdulla.;Jonathan E Campbell.;Thomas Secher.;Jacob Jelsing.;Brett Larsen.;Daniel J Drucker.
来源: Diabetes. 2015年64卷3期1046-56页
Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67(+) cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP-1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice.
502. Cadherin engagement improves insulin secretion of single human β-cells.
作者: Geraldine Parnaud.;Vanessa Lavallard.;Benoît Bedat.;David Matthey-Doret.;Philippe Morel.;Thierry Berney.;Domenico Bosco.
来源: Diabetes. 2015年64卷3期887-96页
The aim of this study was to assess whether cadherin-mediated adhesion of human islet cells was affected by insulin secretagogues and explore the role of cadherins in the secretory activity of β-cells. Experiments were carried out with single islet cells adherent to chimeric proteins made of functional E-, N-, or P-cadherin ectodomains fused to the Fc fragment of immunoglobulin (E-cad/Fc, N-cad/Fc, and P-cad/Fc) and immobilized on an inert substrate. We observed that cadherin expression in islet cells was not affected by insulin secretagogues. Adhesion tests showed that islet cells attached to N-cad/Fc and E-cad/Fc acquired, in a time- and secretagogue-dependent manner, a spreading form that was inhibited by blocking cadherin antibodies. By reverse hemolytic plaque assay, we showed that glucose-stimulated insulin secretion of single β-cells was increased by N-cad/Fc and E-cad/Fc adhesion compared with control. In the presence of E-cad/Fc and after glucose stimulation, we showed that total insulin secretion was six times higher in spreading β-cells compared with round β-cells. Furthermore, cadherin-mediated adhesion induced an asymmetric distribution of cortical actin in β-cells. Our results demonstrate that adhesion of β-cells to E- and N-cadherins is regulated by insulin secretagogues and that E- and N-cadherin engagement promotes stimulated insulin secretion.
503. Niche-dependent regulations of metabolic balance in high-fat diet-induced diabetic mice by mesenchymal stromal cells.
作者: Andrea Tung-Qian Ji.;Yun-Chuang Chang.;Yun-Ju Fu.;Oscar K Lee.;Jennifer H Ho.
来源: Diabetes. 2015年64卷3期926-36页
Mesenchymal stromal cells (MSCs) have great potential to maintain glucose homeostasis and metabolic balance. Here, we demonstrate that in mice continuously fed with high-fat diet (HFD) that developed non-insulin-dependent diabetes, two episodes of systemic MSC transplantations effectively improve glucose tolerance and blood glucose homeostasis and reduce body weight through targeting pancreas and insulin-sensitive tissues and organs via site-specific mechanisms. MSCs support pancreatic islet growth by direct differentiation into insulin-producing cells and by mitigating the cytotoxicity of interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) in the pancreas. Localization of MSCs in the liver and skeletal muscles in diabetic animals is also enhanced and therefore improves glucose tolerance, although long-term engraftment is not observed. MSCs prevent HFD-induced fatty liver development and restore glycogen storage in hepatocytes. Increased expression of IL-1 receptor antagonist and Glut4 in skeletal muscles after MSC transplantation results in better blood glucose homeostasis. Intriguingly, systemic MSC transplantation does not alter adipocyte number, but it decreases HFD-induced cell infiltration in adipose tissues and reduces serum levels of adipokines, including leptin and TNF-α. Taken together, systemic MSC transplantation ameliorates HFD-induced obesity and restores metabolic balance through multisystemic regulations that are niche dependent. Such findings have supported systemic transplantation of MSCs to correct metabolic imbalance.
504. Insulin receptor substrate-2 (Irs2) in endothelial cells plays a crucial role in insulin secretion.
作者: Shinji Hashimoto.;Naoto Kubota.;Hiroyuki Sato.;Motohiro Sasaki.;Iseki Takamoto.;Tetsuya Kubota.;Keizo Nakaya.;Mitsuhiko Noda.;Kohjiro Ueki.;Takashi Kadowaki.
来源: Diabetes. 2015年64卷3期876-86页
Endothelial cells are considered to be essential for normal pancreatic β-cell function. The current study attempted to demonstrate the role of insulin receptor substrate-2 (Irs2) in endothelial cells with regard to insulin secretion. Endothelial cell-specific Irs2 knockout (ETIrs2KO) mice exhibited impaired glucose-induced, arginine-induced, and glucagon-induced insulin secretion and showed glucose intolerance. In batch incubation and perifusion experiments using isolated islets, glucose-induced insulin secretion was not significantly different between the control and the ETIrs2KO mice. In contrast, in perfusion experiments, glucose-induced insulin secretion was significantly impaired in the ETIrs2KO mice. The islet blood flow was significantly impaired in the ETIrs2KO mice. After the treatment of these knockout mice with enalapril maleate, which improved the islet blood flow, glucose-stimulated insulin secretion was almost completely restored to levels equal to those in the control mice. These data suggest that Irs2 deletion in endothelial cells leads to a decreased islet blood flow, which may cause impaired glucose-induced insulin secretion. Thus, Irs2 in endothelial cells may serve as a novel therapeutic target for preventing and ameliorating type 2 diabetes and metabolic syndrome.
505. Central nervous insulin administration does not potentiate the acute glucoregulatory impact of concurrent mild hyperinsulinemia.
作者: Volker Ott.;Hendrik Lehnert.;Josefine Staub.;Kathrin Wönne.;Jan Born.;Manfred Hallschmid.
来源: Diabetes. 2015年64卷3期760-5页
Experiments in rodents suggest that hypothalamic insulin signaling essentially contributes to the acute control of peripheral glucose homeostasis. Against this background, we investigated in healthy humans whether intranasal (IN) insulin, which is known to effectively reach the brain compartment, impacts systemic glucose metabolism. Twenty overnight-fasted healthy, normal-weight men were IN administered 210 and 420 international units [IU] (10 and 20 IU every 15 min) of the insulin analog aspart (ins-asp) and placebo, respectively, during experimental sessions lasting 6 h. The use of ins-asp rather than human insulin enabled us to disentangle exogenous and endogenous insulin kinetics. IN insulin dose-dependently decreased plasma glucose concentrations while reducing C-peptide and attenuating endogenous insulin levels. However, we also observed a slight dose-dependent permeation of ins-asp into the circulation. In control experiments mimicking the systemic but not the central nervous uptake of the IN 210 IU dose via intravenous infusion of ins-asp at a dose of 0.12 IU/kg/24 h (n = 10), we obtained essentially identical effects on fasting plasma glucose concentrations. This pattern indicates that sustained IN insulin administration to the human brain to enhance central nervous insulin signaling does not acutely alter systemic glucose homeostasis beyond effects accounted for by concurrent mild hyperinsulinemia.
506. Factors affecting the decline in incidence of diabetes in the Diabetes Prevention Program Outcomes Study (DPPOS).
作者: .;Richard F Hamman.;Edward Horton.;Elizabeth Barrett-Connor.;George A Bray.;Costas A Christophi.;Jill Crandall.;Jose C Florez.;Sarah Fowler.;Ronald Goldberg.;Steven E Kahn.;William C Knowler.;John M Lachin.;Mary Beth Murphy.;Elizabeth Venditti.
来源: Diabetes. 2015年64卷3期989-98页
During the first 7 years of the Diabetes Prevention Program Outcomes Study (DPPOS), diabetes incidence rates, when compared with the Diabetes Prevention Program (DPP), decreased in the placebo (-42%) and metformin (-25%), groups compared with the rates in the intensive lifestyle intervention (+31%) group. Participants in the placebo and metformin groups were offered group intensive lifestyle intervention prior to entering the DPPOS. The following two hypotheses were explored to explain the rate differences: "effective intervention" (changes in weight and other factors due to intensive lifestyle intervention) and "exhaustion of susceptible" (changes in mean genetic and diabetes risk scores). No combination of behavioral risk factors (weight, physical activity, diet, smoking, and antidepressant or statin use) explained the lower DPPOS rates of diabetes progression in the placebo and metformin groups, whereas weight gain was the factor associated with higher rates of progression in the intensive lifestyle intervention group. Different patterns in the average genetic risk score over time were consistent with exhaustion of susceptibles. Results were consistent with exhaustion of susceptibles for the change in incidence rates, but not the availability of intensive lifestyle intervention to all persons before the beginning of the DPPOS. Thus, effective intervention did not explain the lower diabetes rates in the DPPOS among subjects in the placebo and metformin groups compared with those in the DPP.
507. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome.
作者: I-Chen Yu.;Hung-Yun Lin.;Janet D Sparks.;Shuyuan Yeh.;Chawnshang Chang.
来源: Diabetes. 2014年63卷10期3180-8页
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. Androgen-deprivation therapy (ADT) is the first-line treatment and fundamental management for men with advanced PCa to suppress functions of androgen/androgen receptor (AR) signaling. ADT is effective at improving cancer symptoms and prolonging survival. However, epidemiological and clinical studies support the notion that testosterone deficiency in men leads to the development of metabolic syndrome that increases cardiovascular disease risk. The underlying mechanisms by which androgen/AR signaling regulates metabolic homeostasis in men are complex, and in this review, we discuss molecular mechanisms mediated by AR signaling that link ADT to metabolic syndrome. Results derived from various AR knockout mouse models reveal tissue-specific AR signaling that is involved in regulation of metabolism. These data suggest that steps be taken early to manage metabolic complications associated with PCa patients receiving ADT, which could be accomplished using tissue-selective modulation of AR signaling and by treatment with insulin-sensitizing agents.
514. Ask1 gene deletion blocks maternal diabetes-induced endoplasmic reticulum stress in the developing embryo by disrupting the unfolded protein response signalosome.
作者: Fang Wang.;Yanqing Wu.;Hui Gu.;E Albert Reece.;Shengyun Fang.;Rinat Gabbay-Benziv.;Graham Aberdeen.;Peixin Yang.
来源: Diabetes. 2015年64卷3期973-88页
Apoptosis signal-regulating kinase 1 (ASK1) is activated by various stresses. The link between ASK1 activation and endoplasmic reticulum (ER) stress, two causal events in diabetic embryopathy, has not been determined. We sought to investigate whether ASK1 is involved in the unfolded protein response (UPR) that leads to ER stress. Deleting Ask1 abrogated diabetes-induced UPR by suppressing phosphorylation of inositol-requiring enzyme 1α (IRE1α), and double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) blocked the mitochondrial translocation of proapoptotic Bcl-2 members and ER stress. ASK1 participated in the IRE1α signalosome, and removing ASK1 abrogated the proapoptotic kinase activity of IRE1α. Ask1 deletion suppressed diabetes-induced IRE1α endoriboneclease activities, which led to X-box binding protein 1 mRNA cleavage, an ER stress marker, decreased expression of microRNAs, and increased expression of a miR-17 target, thioredoxin-interacting protein (Txnip), a thioredoxin binding protein, which enhanced ASK1 activation by disrupting the thioredoxin-ASK1 complexes. ASK1 is essential for the assembly and function of the IRE1α signalosome, which forms a positive feedback loop with ASK1 through Txnip. ASK1 knockdown in C17.2 neural stem cells diminished high glucose- or tunicamycin-induced IRE1α activation, which further supports our hypothesis that ASK1 plays a causal role in diabetes-induced ER stress and apoptosis.
515. Identification and saturable nature of signaling pathways induced by metreleptin in humans: comparative evaluation of in vivo, ex vivo, and in vitro administration.
作者: Hyun-Seuk Moon.;Joo Young Huh.;Fadime Dincer.;Benjamin E Schneider.;Per-Olof Hasselgren.;Christos S Mantzoros.
来源: Diabetes. 2015年64卷3期828-39页
Signaling pathways activated by leptin in metabolically important organs have largely been studied only in animal and/or cell culture studies. In this study, we examined whether leptin has similar effects in human peripheral tissues in vivo, ex vivo, and in vitro and whether the response would be different in lean and obese humans. For in vivo leptin signaling, metreleptin was administered and muscle, adipose tissue, and peripheral blood mononuclear cells were taken for analysis of signal activation. Experiments were also done ex vivo and with primary cultured cells in vitro. The signal activation was compared between male versus female and obese versus lean humans. Acute in vivo, ex vivo, and/or in vitro metreleptin administration similarly activated STAT3, AMPK, ERK1/2, Akt, mTOR, NF-κB, and/or IKKα/β without any differences between male versus female and obese versus lean subjects. All signaling pathways were saturable at ∼30-50 ng/mL, consistent with the clinical evidence showing no additional effect(s) in obese subjects who already have high levels of leptin. Our data provide novel information on downstream effectors of metreleptin action in humans that may have therapeutic implications.
516. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure.
作者: Ania Skowera.;Kristin Ladell.;James E McLaren.;Garry Dolton.;Katherine K Matthews.;Emma Gostick.;Deborah Kronenberg-Versteeg.;Martin Eichmann.;Robin R Knight.;Susanne Heck.;Jake Powrie.;Polly J Bingley.;Colin M Dayan.;John J Miles.;Andrew K Sewell.;David A Price.;Mark Peakman.
来源: Diabetes. 2015年64卷3期916-925页
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high-definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent-onset type 1 diabetes and healthy control subjects. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy control subjects, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes.
517. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice.
作者: Hiroshi Tsuneki.;Emi Tokai.;Yuya Nakamura.;Keisuke Takahashi.;Mikio Fujita.;Takehiro Asaoka.;Kanta Kon.;Yuuki Anzawa.;Tsutomu Wada.;Ichiro Takasaki.;Kumi Kimura.;Hiroshi Inoue.;Masashi Yanagisawa.;Takeshi Sakurai.;Toshiyasu Sasaoka.
来源: Diabetes. 2015年64卷2期459-70页
Circadian rhythm is crucial for preventing hepatic insulin resistance, although the mechanism remains uncovered. Here we report that the wake-active hypothalamic orexin system plays a key role in this regulation. Wild-type mice showed that a daily rhythm in blood glucose levels peaked at the awake period; however, the glucose rhythm disappeared in orexin knockout mice despite normal feeding rhythm. Central administration of orexin A during nighttime awake period acutely elevated blood glucose levels but subsequently lowered daytime glucose levels in normal and diabetic db/db mice. The glucose-elevating and -lowering effects of orexin A were suppressed by adrenergic antagonists and hepatic parasympathectomy, respectively. Moreover, the expression levels of hepatic gluconeogenic genes, including Pepck, were increased and decreased by orexin A at nanomolar and femtomolar doses, respectively. These results indicate that orexin can bidirectionally regulate hepatic gluconeogenesis via control of autonomic balance, leading to generation of the daily blood glucose oscillation. Furthermore, during aging, orexin deficiency enhanced endoplasmic reticulum (ER) stress in the liver and caused impairment of hepatic insulin signaling and abnormal gluconeogenic activity in pyruvate tolerance test. Collectively, the daily glucose rhythm under control of orexin appears to be important for maintaining ER homeostasis, thereby preventing insulin resistance in the liver.
518. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes.
作者: Hui Zhang.;Ying Hao.;Bradley Manor.;Peter Novak.;William Milberg.;Jue Zhang.;Jing Fang.;Vera Novak.
来源: Diabetes. 2015年64卷3期1025-34页
Type 2 diabetes mellitus (T2DM) alters brain function and manifests as brain atrophy. Intranasal insulin has emerged as a promising intervention for treatment of cognitive impairment. We evaluated the acute effects of intranasal insulin on resting-state brain functional connectivity in older adults with T2DM. This proof-of-concept, randomized, double-blind, placebo-controlled study evaluated the effects of a single 40 IU dose of insulin or saline in 14 diabetic and 14 control subjects. Resting-state functional connectivity between the hippocampal region and default mode network (DMN) was quantified using functional MRI (fMRI) at 3Tesla. Following insulin administration, diabetic patients demonstrated increased resting-state connectivity between the hippocampal regions and the medial frontal cortex (MFC) as compared with placebo (cluster size: right, P = 0.03) and other DMN regions. On placebo, the diabetes group had lower connectivity between the hippocampal region and the MFC as compared with control subjects (cluster size: right, P = 0.02), but on insulin, MFC connectivity was similar to control subjects. Resting-state connectivity correlated with cognitive performance. A single dose of intranasal insulin increases resting-state functional connectivity between the hippocampal regions and multiple DMN regions in older adults with T2DM. Intranasal insulin administration may modify functional connectivity among brain regions regulating memory and complex cognitive behaviors.
519. “Deletion of both Rab-GTPase–activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport [corrected].
作者: Alexandra Chadt.;Anja Immisch.;Christian de Wendt.;Christian Springer.;Zhou Zhou.;Torben Stermann.;Geoffrey D Holman.;Dominique Loffing-Cueni.;Johannes Loffing.;Hans-Georg Joost.;Hadi Al-Hasani.
来源: Diabetes. 2015年64卷3期746-59页
The Rab-GTPase–activating proteins TBC1D1 and TBC1D4 (AS160) were previously shown to regulate GLUT4 translocation in response to activation of AKT and AMP-dependent kinase [corrected]. However, knockout mice lacking either Tbc1d1 or Tbc1d4 displayed only partially impaired insulin-stimulated glucose uptake in fat and muscle tissue. The aim of this study was to determine the impact of the combined inactivation of Tbc1d1 and Tbc1d4 on glucose metabolism in double-deficient (D1/4KO) mice. D1/4KO mice displayed normal fasting glucose concentrations but had reduced tolerance to intraperitoneally administered glucose, insulin, and AICAR. D1/4KO mice showed reduced respiratory quotient, indicating increased use of lipids as fuel. These mice also consistently showed elevated fatty acid oxidation in isolated skeletal muscle, whereas insulin-stimulated glucose uptake in muscle and adipose cells was almost completely abolished. In skeletal muscle and white adipose tissue, the abundance of GLUT4 protein, but not GLUT4 mRNA, was substantially reduced. Cell surface labeling of GLUTs indicated that RabGAP deficiency impairs retention of GLUT4 in intracellular vesicles in the basal state. Our results show that TBC1D1 and TBC1D4 together play essential roles in insulin-stimulated glucose uptake and substrate preference in skeletal muscle and adipose cells.
520. B-1a lymphocytes attenuate insulin resistance.
作者: Lei Shen.;Melissa Hui Yen Chng.;Michael N Alonso.;Robert Yuan.;Daniel A Winer.;Edgar G Engleman.
来源: Diabetes. 2015年64卷2期593-603页
Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell-derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell-deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell-activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell-depleting, B-1a cell-sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance.
|