当前位置: 首页 >> 检索结果
共有 15225 条符合本次的查询结果, 用时 3.4014639 秒

201. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes.

作者: Aimon K Alkanani.;Naoko Hara.;Peter A Gottlieb.;Diana Ir.;Charles E Robertson.;Brandie D Wagner.;Daniel N Frank.;Danny Zipris.
来源: Diabetes. 2015年64卷10期3510-20页
We tested the hypothesis that alterations in the intestinal microbiota are linked with the progression of type 1 diabetes (T1D). Herein, we present results from a study performed in subjects with islet autoimmunity living in the U.S. High-throughput sequencing of bacterial 16S rRNA genes and adjustment for sex, age, autoantibody presence, and HLA indicated that the gut microbiomes of seropositive subjects differed from those of autoantibody-free first-degree relatives (FDRs) in the abundance of four taxa. Furthermore, subjects with autoantibodies, seronegative FDRs, and new-onset patients had different levels of the Firmicutes genera Lactobacillus and Staphylococcus compared with healthy control subjects with no family history of autoimmunity. Further analysis revealed trends toward increased and reduced abundances of the Bacteroidetes genera Bacteroides and Prevotella, respectively, in seropositive subjects with multiple versus one autoantibody. Canonical discriminant analysis suggested that the gut microbiomes of autoantibody-positive individuals and seronegative FDRs clustered together but separate from those of new-onset patients and unrelated healthy control subjects. Finally, no differences in biodiversity were evident in seropositive versus seronegative FDRs. These observations suggest that altered intestinal microbiota may be associated with disease susceptibility.

202. Müller Glia Are a Major Cellular Source of Survival Signals for Retinal Neurons in Diabetes.

作者: Shuhua Fu.;Shuqian Dong.;Meili Zhu.;David M Sherry.;Changyun Wang.;Zhipeng You.;Jody J Haigh.;Yun-Zheng Le.
来源: Diabetes. 2015年64卷10期3554-63页
To dissect the role of vascular endothelial growth factor receptor-2 (VEGFR2) in Müller cells and its effect on neuroprotection in diabetic retinopathy (DR), we disrupted VEGFR2 in mouse Müller glia and determined its effect on Müller cell survival, neuronal integrity, and trophic factor production in diabetic retinas. Diabetes was induced with streptozotocin. Retinal function was measured with electroretinography. Müller cell and neuronal densities were assessed with morphometric and immunohistochemical analyses. Loss of VEGFR2 caused a gradual reduction in Müller glial density, which reached to a significant level 10 months after the onset of diabetes. This observation was accompanied by an age-dependent decrease of scotopic and photopic electroretinography amplitudes and accelerated loss of rod and cone photoreceptors, ganglion cell layer cells, and inner nuclear layer neurons and by a significant reduction of retinal glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Our results suggest that VEGFR2-mediated Müller cell survival is required for the viability of retinal neurons in diabetes. The genetically altered mice established in this study can be used as a diabetic animal model of nontoxin-induced Müller cell ablation, which will be useful for exploring the cellular mechanisms of neuronal alteration in DR.

203. Brown and Beige Fat: Molecular Parts of a Thermogenic Machine.

作者: Paul Cohen.;Bruce M Spiegelman.
来源: Diabetes. 2015年64卷7期2346-51页
The epidemic of obesity and type 2 diabetes has increased interest in pathways that affect energy balance in mammalian systems. Brown fat, in all of its dimensions, can increase energy expenditure through the dissipation of chemical energy in the form of heat, using mitochondrial uncoupling and perhaps other pathways. We discuss here some of the thermodynamic and cellular aspects of recent progress in brown fat research. This includes studies of developmental lineages of UCP1(+) adipocytes, including the discovery of beige fat cells, a new thermogenic cell type. We also discuss the physiology and transcriptional control of brown and beige cells in rodents and the state of current knowledge about human brown fat.

204. Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation.

作者: Patrick Seale.
来源: Diabetes. 2015年64卷7期2369-75页
Brown and beige adipose tissue is specialized for heat production and can be activated to reduce obesity and metabolic dysfunction in animals. Recent studies also have indicated that human brown fat activity levels correlate with leanness. This has revitalized interest in brown fat biology and has driven the discovery of many new regulators of brown fat development and function. This review summarizes recent advances in our understanding of the transcriptional mechanisms that control brown and beige fat cell development.

205. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

作者: Kristin I Stanford.;Roeland J W Middelbeek.;Laurie J Goodyear.
来源: Diabetes. 2015年64卷7期2361-8页
Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

206. Human Brown Adipose Tissue: What We Have Learned So Far.

作者: Matthias J Betz.;Sven Enerbäck.
来源: Diabetes. 2015年64卷7期2352-60页
Brown adipose tissue (BAT) is a unique tissue that is able to convert chemical energy directly into heat when activated by the sympathetic nervous system. While initially believed to be of relevance only in human newborns and infants, research during recent years provided unequivocal evidence of active BAT in human adults. Moreover, it has become clear that BAT plays an important role in insulin sensitivity in rodents and humans. This has opened the possibility for exciting new therapies for obesity and diabetes. This review summarizes the current state of research with a special focus on recent advances regarding BAT and insulin resistance in human adults. Additionally, we provide an outlook on possible future therapeutic uses of BAT in the treatment of obesity and diabetes.

207. Abstracts of the 74th Scientific Sessions of the American Diabetes Association, June 13-17, 2014, San Francisco, California.

来源: Diabetes. 2014年63 Suppl 1卷A1-822页

208. Inactivation of NF-κB p65 (RelA) in Liver Improves Insulin Sensitivity and Inhibits cAMP/PKA Pathway.

作者: Bilun Ke.;Zhiyun Zhao.;Xin Ye.;Zhanguo Gao.;Vincent Manganiello.;Bin Wu.;Jianping Ye.
来源: Diabetes. 2015年64卷10期3355-62页
The transcription factor nuclear factor-κB (NF-κB) mediates inflammation and stress signals in cells. To test NF-κB in the control of hepatic insulin sensitivity, we inactivated NF-κB in the livers of C57BL/6 mice through deletion of the p65 gene, which was achieved by crossing floxed-p65 and Alb-cre mice to generate L-p65-knockout (KO) mice. KO mice did not exhibit any alterations in growth, reproduction, and body weight while on a chow diet. However, the mice on a high-fat diet (HFD) exhibited an improvement in systemic insulin sensitivity. Hepatic insulin sensitivity was enhanced as indicated by increased pyruvate tolerance, Akt phosphorylation, and decreased gene expression in hepatic gluconeogenesis. In the liver, a decrease in intracellular cAMP was observed with decreased CREB phosphorylation. Cyclic nucleotide phosphodiesterase-3B (PDE3B), a cAMP-degrading enzyme, was increased in mRNA and protein as a result of the absence of NF-κB activity. NF-κB was found to inhibit PDE3B transcription through three DNA-binding sites in the gene promoter in response to tumor necrosis factor-α. Body composition, food intake, energy expenditure, and systemic and hepatic inflammation were not significantly altered in KO mice on HFD. These data suggest that NF-κB inhibits hepatic insulin sensitivity by upregulating cAMP through suppression of PDE3B gene transcription.

209. Fasting-Induced Lipolysis and Hypothalamic Insulin Signaling Are Regulated by Neuronal Glucosylceramide Synthase.

作者: Silke Herzer.;Sascha Meldner.;Hermann-Josef Gröne.;Viola Nordström.
来源: Diabetes. 2015年64卷10期3363-76页
Central nervous regulation of body weight and adipose tissue function is mainly conducted by hypothalamic neurons. Neuronal function depends on the integrity of the membrane lipid microenvironment. Lipid microdomains contain large quantities of cholesterol and glycosphingolipids, including glucosylceramide synthase (GCS) (gene Ugcg)-derived gangliosides. The current study demonstrates that Ugcgf/f//CamKCreERT2 mice with genetic GCS deletion in forebrain neurons, dominantly targeting mediobasal hypothalamus (MBH), display impaired fasting-induced lipolysis accompanied by a decreased norepinephrine content in white adipose tissue (WAT). MBH insulin receptor (IR) levels and signaling are increased in Ugcgf/f//CamKCreERT2 mice. These results are in concordance with reports stating that MBH insulin signaling restrains sympathetic nervous outflow to WAT in fasted mice. In line with the in vivo data, pharmacological GCS inhibition by Genz123346 also increases IR levels as well as IR phosphorylation in insulin-stimulated hypothalamic cells. In addition to studies suggesting that simple gangliosides like GM3 regulate peripheral IR signaling, this work suggests that complex neuronal gangliosides also modulate hypothalamic IR signaling and protein levels. For example, the complex ganglioside GD1a interacts dynamically with the IRs on adult hypothalamic neurons. In summary, our results suggest that neuronal GCS expression modulates MBH insulin signaling and WAT function in fasted mice.

210. DAPK2 Downregulation Associates With Attenuated Adipocyte Autophagic Clearance in Human Obesity.

作者: Hedi Soussi.;Sophie Reggio.;Rohia Alili.;Cecilia Prado.;Sonia Mutel.;Maria Pini.;Christine Rouault.;Karine Clément.;Isabelle Dugail.
来源: Diabetes. 2015年64卷10期3452-63页
Adipose tissue dysfunction in obesity has been linked to low-grade inflammation causing insulin resistance. Transcriptomic studies have identified death-associated protein kinase 2 (DAPK2) among the most strongly downregulated adipose tissue genes in human obesity, but the role of this kinase is unknown. We show that mature adipocytes rather than the stromal vascular cells in adipose tissue mainly expressed DAPK2 and that DAPK2 mRNA in obese patients gradually recovered after bariatric surgery-induced weight loss. DAPK2 mRNA is also downregulated in high-fat diet-induced obese mice. Adenoviral-mediated DAPK2 overexpression in 3T3-L1 adipocytes did not affect lipid droplet size or cell viability but did increase autophagic clearance in nutrient-rich conditions, dependent on protein kinase activity. Conversely, DAPK2 inhibition in human preadipocytes by small interfering RNA decreased LC3-II accumulation rates with lysosome inhibitors. This led us to assess autophagic clearance in adipocytes freshly isolated from subcutaneous adipose tissue of obese patients. Severe reduction in autophagic flux was observed in obese adipocytes compared with control adipocytes, inversely correlated to fat cell lipids. After bariatric surgery, adipocyte autophagic clearance partially recovered proportional to the extent of fat cell size reduction. This study links adipocyte expression of an autophagy-regulating kinase, lysosome-mediated clearance and fat cell lipid accumulation; it demonstrates obesity-related attenuated autophagy in adipocytes, and identifies DAPK2 dependence in this regulation.

211. GPR43 Potentiates β-Cell Function in Obesity.

作者: Joanne C McNelis.;Yun Sok Lee.;Rafael Mayoral.;Rik van der Kant.;Andrew M F Johnson.;Joshua Wollam.;Jerrold M Olefsky.
来源: Diabetes. 2015年64卷9期3203-17页
The intestinal microbiome can regulate host energy homeostasis and the development of metabolic disease. Here we identify GPR43, a receptor for bacterially produced short-chain fatty acids (SCFAs), as a modulator of microbiota-host interaction. β-Cell expression of GPR43 and serum levels of acetate, an endogenous SCFA, are increased with a high-fat diet (HFD). HFD-fed GPR43 knockout (KO) mice develop glucose intolerance due to a defect in insulin secretion. In vitro treatment of isolated murine islets, human islets, and Min6 cells with (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide (PA), a specific agonist of GPR43, increased intracellular inositol triphosphate and Ca(2+) levels, and potentiated insulin secretion in a GPR43-, Gαq-, and phospholipase C-dependent manner. In addition, KO mice fed an HFD displayed reduced β-cell mass and expression of differentiation genes, and the treatment of Min6 cells with PA increased β-cell proliferation and gene expression. Together these findings identify GPR43 as a potential target for therapeutic intervention.

212. Mechanism of Altered Metformin Distribution in Nonalcoholic Steatohepatitis.

作者: John D Clarke.;Anika L Dzierlenga.;Nicholas R Nelson.;Hui Li.;Samantha Werts.;Michael J Goedken.;Nathan J Cherrington.
来源: Diabetes. 2015年64卷9期3305-13页
Metformin is an antihyperglycemic drug that is widely prescribed for type 2 diabetes mellitus and is currently being investigated for the treatment of nonalcoholic steatohepatitis (NASH). NASH is known to alter hepatic membrane transporter expression and drug disposition similarly in humans and rodent models of NASH. Metformin is almost exclusively eliminated through the kidney primarily through active secretion mediated by Oct1, Oct2, and Mate1. The purpose of this study was to determine how NASH affects kidney transporter expression and metformin pharmacokinetics. A single oral dose of [(14)C]metformin was administered to C57BL/6J (wild type [WT]) and diabetic ob/ob mice fed either a control diet or a methionine- and choline-deficient (MCD) diet. Metformin plasma concentrations were slightly increased in the WT/MCD and ob/control groups, whereas plasma concentrations were 4.8-fold higher in ob/MCD mice compared with WT/control. The MCD diet significantly increased plasma half-life and mean residence time and correspondingly decreased oral clearance in both genotypes. These changes in disposition were caused by ob/ob- and MCD diet-specific decreases in the kidney mRNA expression of Oct2 and Mate1, whereas Oct1 mRNA expression was only decreased in ob/MCD mice. These results indicate that the diabetic ob/ob genotype and the MCD disease model alter kidney transporter expression and alter the pharmacokinetics of metformin, potentially increasing the risk of drug toxicity.

213. Obesity Appears to Be Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function.

作者: Andrew J Murton.;Kanagaraj Marimuthu.;Joanne E Mallinson.;Anna L Selby.;Kenneth Smith.;Michael J Rennie.;Paul L Greenhaff.
来源: Diabetes. 2015年64卷9期3160-71页
Obesity is increasing, yet despite the necessity of maintaining muscle mass and function with age, the effect of obesity on muscle protein turnover in older adults remains unknown. Eleven obese (BMI 31.9 ± 1.1 kg · m(-2)) and 15 healthy-weight (BMI 23.4 ± 0.3 kg · m(-2)) older men (55-75 years old) participated in a study that determined muscle protein synthesis (MPS) and leg protein breakdown (LPB) under postabsorptive (hypoinsulinemic-euglycemic clamp) and postprandial (hyperinsulinemic hyperaminoacidemic-euglycemic clamp) conditions. Obesity was associated with systemic inflammation, greater leg fat mass, and patterns of mRNA expression consistent with muscle deconditioning, whereas leg lean mass, strength, and work done during maximal exercise were no different. Under postabsorptive conditions, MPS and LPB were equivalent between groups, whereas insulin and amino acid administration increased MPS in only healthy-weight subjects and was associated with lower leg glucose disposal (LGD) (63%) in obese men. Blunting of MPS in the obese men was offset by an apparent decline in LPB, which was absent in healthy-weight subjects. Lower postprandial LGD in obese subjects and blunting of MPS responses to amino acids suggest that obesity in older adults is associated with diminished muscle metabolic quality. This does not, however, appear to be associated with lower leg lean mass or strength.

214. Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion.

作者: Ele Ferrannini.;Stefania Camastra.;Brenno Astiarraga.;Monica Nannipieri.;Jose Castro-Perez.;Dan Xie.;Liangsu Wang.;Manu Chakravarthy.;Rebecca A Haeusler.
来源: Diabetes. 2015年64卷10期3377-85页
Biliopancreatic diversion (BPD) improves insulin sensitivity and decreases serum cholesterol out of proportion with weight loss. Mechanisms of these effects are unknown. One set of proposed contributors to metabolic improvements after bariatric surgeries is bile acids (BAs). We investigated the early and late effects of BPD on plasma BA levels, composition, and markers of BA synthesis in 15 patients with type 2 diabetes (T2D). We compared these to the early and late effects of Roux-en-Y gastric bypass (RYGB) in 22 patients with T2D and 16 with normal glucose tolerance. Seven weeks after BPD, insulin sensitivity had doubled and serum cholesterol had halved. At this time, BA synthesis markers and total plasma BAs, particularly unconjugated BAs, had markedly risen; this effect could not be entirely explained by low FGF19. In contrast, after RYGB, insulin sensitivity improved gradually with weight loss and cholesterol levels declined marginally; BA synthesis markers were decreased at an early time point (2 weeks) after surgery and returned to the normal range 1 year later. These findings indicate that BA synthesis contributes to the decreased serum cholesterol after BPD. Moreover, they suggest a potential role for altered enterohepatic circulation of BAs in improving insulin sensitivity and cholesterol metabolism after BPD.

215. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

作者: Jose Cordoba-Chacon.;Neena Majumdar.;Edward O List.;Alberto Diaz-Ruiz.;Stuart J Frank.;Anna Manzano.;Ramon Bartrons.;Michelle Puchowicz.;John J Kopchick.;Rhonda D Kineman.
来源: Diabetes. 2015年64卷9期3093-103页
Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients.

216. Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury.

作者: Yixing Yuchi.;Ying Cai.;Bart Legein.;Sofie De Groef.;Gunter Leuckx.;Violette Coppens.;Eva Van Overmeire.;Willem Staels.;Nico De Leu.;Geert Martens.;Jo A Van Ginderachter.;Harry Heimberg.;Mark Van de Casteele.
来源: Diabetes. 2015年64卷9期3218-28页
Identifying pathways for β-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17β-estradiol (E2) and estrogen receptor (ER) signaling for stimulating β-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in β-cells. PDL-induced proliferation of β-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and β-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted β-cell formation. In the embryonic pancreas, β-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive β-cell replication and formation in mouse pancreas.

217. DNA Methylation Variants at HIF3A Locus, B-Vitamin Intake, and Long-term Weight Change: Gene-Diet Interactions in Two U.S. Cohorts.

作者: Tao Huang.;Yan Zheng.;Qibin Qi.;Min Xu.;Sylvia H Ley.;Yanping Li.;Jae H Kang.;Janey Wiggs.;Louis R Pasquale.;Andrew T Chan.;Eric B Rimm.;David J Hunter.;JoAnn E Manson.;Walter C Willett.;Frank B Hu.;Lu Qi.
来源: Diabetes. 2015年64卷9期3146-54页
The first epigenome-wide association study of BMI identified DNA methylation at an HIF3A locus associated with BMI. We tested the hypothesis that DNA methylation variants are associated with BMI according to intake of B vitamins. In two large cohorts, we found significant interactions between the DNA methylation-associated HIF3A single nucleotide polymorphism (SNP) rs3826795 and intake of B vitamins on 10-year changes in BMI. The association between rs3826795 and BMI changes consistently increased across the tertiles of total vitamin B2 and B12 intake (all P for interaction <0.01). The differences in the BMI changes per increment of minor allele were -0.10 (SE 0.06), -0.01 (SE 0.06), and 0.12 (SE 0.07) within subgroups defined by increasing tertiles of total vitamin B2 intake and -0.10 (SE 0.06), -0.01 (SE 0.06), and 0.10 (SE 0.07) within subgroups defined by increasing tertiles of total vitamin B12 intake. In two independent cohorts, a DNA methylation variant in HIF3A was associated with BMI changes through interactions with total or supplemental vitamin B2, vitamin B12, and folate. These findings suggest a potential causal relation between DNA methylation and adiposity.

218. Reactivity to N-Terminally Truncated GAD65(96-585) Identifies GAD Autoantibodies That Are More Closely Associated With Diabetes Progression in Relatives of Patients With Type 1 Diabetes.

作者: Alistair J K Williams.;Vito Lampasona.;Rebecca Wyatt.;Cristina Brigatti.;Kathleen M Gillespie.;Polly J Bingley.;Peter Achenbach.
来源: Diabetes. 2015年64卷9期3247-52页
GAD autoantibodies (GADAs) identify individuals at increased risk of developing type 1 diabetes, but many people currently found to be GADA positive are unlikely to progress to clinical disease. More specific GADA assays are therefore needed. Recent international workshops have shown that the reactivity of sera from healthy donors varies according to assay type and indicated that the use of N-terminally truncated GAD65 radiolabels in GADA radiobinding assays is associated with higher specificity. To determine whether a radiobinding assay using radiolabeled GAD65(96-585) identified individuals who are at higher risk of developing diabetes, samples from recent-onset patients and GADA-positive first-degree relatives participating in the Bart's-Oxford type 1 diabetes family study were reassayed with full-length or N-terminally truncated GAD using the National Institute of Diabetes and Digestive and Kidney Diseases harmonized protocol. The sensitivity in patients was the same with both labels, but fewer relatives retested positive with truncated GAD. Among relatives who progressed to diabetes, similar proportions were found to be GADA positive when tested with either label, but because of their higher specificity the cumulative risk of diabetes was higher in those with autoantibodies to GAD65(96-585). Autoantibodies to GAD65(96-585) in relatives are more closely associated with diabetes risk than those to full-length GAD, suggesting that assays using N-terminally truncated GAD should be used to select participants for intervention trials.

219. Improved Insulin Sensitivity 3 Months After RYGB Surgery Is Associated With Increased Subcutaneous Adipose Tissue AMPK Activity and Decreased Oxidative Stress.

作者: X Julia Xu.;Caroline Apovian.;Donald Hess.;Brian Carmine.;Asish Saha.;Neil Ruderman.
来源: Diabetes. 2015年64卷9期3155-9页
Morbidly obese individuals are predisposed to a wide range of disorders, including type 2 diabetes, atherosclerotic cardiovascular disease, fatty liver disease, and certain cancers. Remarkably, all of these disorders can be improved or prevented by Roux-en-Y gastric bypass (RYGB) surgery. We have reported that decreased AMPK activity, together with increased oxidative stress and inflammation in adipose tissue, is associated with insulin resistance in morbidly obese bariatric surgery patients. In the current study, we assessed how these parameters are affected by RYGB surgery. Eleven patients (average age of 46 ± 4 years) were studied immediately prior to surgery and 3 months postoperatively. We measured subcutaneous adipose tissue AMPK phosphorylation (threonine 172, an index of its activation), malonyl-CoA content, protein carbonylation (a marker of oxidative stress), plasma adiponectin, and mRNA expression of several inflammatory cytokines. After surgery, AMPK activity increased 3.5-fold and oxidative stress decreased by 50% in subcutaneous adipose tissue. In addition, malonyl-CoA levels were reduced by 80%. Furthermore, patients had improvements in their BMI and insulin sensitivity (HOMA) and had increased circulating high-molecular weight adiponectin and decreased fasting plasma insulin levels. In contrast, the expression of inflammatory markers in subcutaneous adipose tissue was unchanged postoperatively, although plasma CRP was diminished by 50%.

220. Response to Comment on Heni et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes 2014;63:4083-4088.

作者: Martin Heni.;Robert Wagner.;Stephanie Kullmann.;Hubert Preissl.;Andreas Fritsche.
来源: Diabetes. 2015年64卷6期e8-9页
共有 15225 条符合本次的查询结果, 用时 3.4014639 秒