当前位置: 首页 >> 检索结果
共有 5 条符合本次的查询结果, 用时 5.6729783 秒

1. Trans-ancestry genome-wide study of depression identifies 697 associations implicating cell types and pharmacotherapies.

作者: .; .
来源: Cell. 2025年188卷3期640-652.e9页
In a genome-wide association study (GWAS) meta-analysis of 688,808 individuals with major depression (MD) and 4,364,225 controls from 29 countries across diverse and admixed ancestries, we identify 697 associations at 635 loci, 293 of which are novel. Using fine-mapping and functional tools, we find 308 high-confidence gene associations and enrichment of postsynaptic density and receptor clustering. A neural cell-type enrichment analysis utilizing single-cell data implicates excitatory, inhibitory, and medium spiny neurons and the involvement of amygdala neurons in both mouse and human single-cell analyses. The associations are enriched for antidepressant targets and provide potential repurposing opportunities. Polygenic scores trained using European or multi-ancestry data predicted MD status across all ancestries, explaining up to 5.8% of MD liability variance in Europeans. These findings advance our global understanding of MD and reveal biological targets that may be used to target and develop pharmacotherapies addressing the unmet need for effective treatment.

2. By their powers combined, global initiative joins forces for genomic research.

作者: Genevieve L Wojcik.
来源: Cell. 2022年185卷23期4256-4258页
Genome-wide association studies (GWASs) can require immense sample sizes to identify variants associated with human health across the frequency spectrum. As the Global Biobank Meta-analysis Initiative (GBMI), Zhou et al. describe a collaborative network across 23 biobanks and 2.2 million participants to address challenges of underrepresentation of diversity in genomic research.

3. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition.

作者: Kevin Litchfield.;James L Reading.;Clare Puttick.;Krupa Thakkar.;Chris Abbosh.;Robert Bentham.;Thomas B K Watkins.;Rachel Rosenthal.;Dhruva Biswas.;Andrew Rowan.;Emilia Lim.;Maise Al Bakir.;Virginia Turati.;José Afonso Guerra-Assunção.;Lucia Conde.;Andrew J S Furness.;Sunil Kumar Saini.;Sine R Hadrup.;Javier Herrero.;Se-Hoon Lee.;Peter Van Loo.;Tariq Enver.;James Larkin.;Matthew D Hellmann.;Samra Turajlic.;Sergio A Quezada.;Nicholas McGranahan.;Charles Swanton.
来源: Cell. 2021年184卷3期596-614.e14页
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.

4. The Polygenic and Monogenic Basis of Blood Traits and Diseases.

作者: Dragana Vuckovic.;Erik L Bao.;Parsa Akbari.;Caleb A Lareau.;Abdou Mousas.;Tao Jiang.;Ming-Huei Chen.;Laura M Raffield.;Manuel Tardaguila.;Jennifer E Huffman.;Scott C Ritchie.;Karyn Megy.;Hannes Ponstingl.;Christopher J Penkett.;Patrick K Albers.;Emilie M Wigdor.;Saori Sakaue.;Arden Moscati.;Regina Manansala.;Ken Sin Lo.;Huijun Qian.;Masato Akiyama.;Traci M Bartz.;Yoav Ben-Shlomo.;Andrew Beswick.;Jette Bork-Jensen.;Erwin P Bottinger.;Jennifer A Brody.;Frank J A van Rooij.;Kumaraswamy N Chitrala.;Peter W F Wilson.;Hélène Choquet.;John Danesh.;Emanuele Di Angelantonio.;Niki Dimou.;Jingzhong Ding.;Paul Elliott.;Tõnu Esko.;Michele K Evans.;Stephan B Felix.;James S Floyd.;Linda Broer.;Niels Grarup.;Michael H Guo.;Qi Guo.;Andreas Greinacher.;Jeff Haessler.;Torben Hansen.;Joanna M M Howson.;Wei Huang.;Eric Jorgenson.;Tim Kacprowski.;Mika Kähönen.;Yoichiro Kamatani.;Masahiro Kanai.;Savita Karthikeyan.;Fotios Koskeridis.;Leslie A Lange.;Terho Lehtimäki.;Allan Linneberg.;Yongmei Liu.;Leo-Pekka Lyytikäinen.;Ani Manichaikul.;Koichi Matsuda.;Karen L Mohlke.;Nina Mononen.;Yoshinori Murakami.;Girish N Nadkarni.;Kjell Nikus.;Nathan Pankratz.;Oluf Pedersen.;Michael Preuss.;Bruce M Psaty.;Olli T Raitakari.;Stephen S Rich.;Benjamin A T Rodriguez.;Jonathan D Rosen.;Jerome I Rotter.;Petra Schubert.;Cassandra N Spracklen.;Praveen Surendran.;Hua Tang.;Jean-Claude Tardif.;Mohsen Ghanbari.;Uwe Völker.;Henry Völzke.;Nicholas A Watkins.;Stefan Weiss.; .;Na Cai.;Kousik Kundu.;Stephen B Watt.;Klaudia Walter.;Alan B Zonderman.;Kelly Cho.;Yun Li.;Ruth J F Loos.;Julian C Knight.;Michel Georges.;Oliver Stegle.;Evangelos Evangelou.;Yukinori Okada.;David J Roberts.;Michael Inouye.;Andrew D Johnson.;Paul L Auer.;William J Astle.;Alexander P Reiner.;Adam S Butterworth.;Willem H Ouwehand.;Guillaume Lettre.;Vijay G Sankaran.;Nicole Soranzo.
来源: Cell. 2020年182卷5期1214-1231.e11页
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.

5. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations.

作者: Ming-Huei Chen.;Laura M Raffield.;Abdou Mousas.;Saori Sakaue.;Jennifer E Huffman.;Arden Moscati.;Bhavi Trivedi.;Tao Jiang.;Parsa Akbari.;Dragana Vuckovic.;Erik L Bao.;Xue Zhong.;Regina Manansala.;Véronique Laplante.;Minhui Chen.;Ken Sin Lo.;Huijun Qian.;Caleb A Lareau.;Mélissa Beaudoin.;Karen A Hunt.;Masato Akiyama.;Traci M Bartz.;Yoav Ben-Shlomo.;Andrew Beswick.;Jette Bork-Jensen.;Erwin P Bottinger.;Jennifer A Brody.;Frank J A van Rooij.;Kumaraswamynaidu Chitrala.;Kelly Cho.;Hélène Choquet.;Adolfo Correa.;John Danesh.;Emanuele Di Angelantonio.;Niki Dimou.;Jingzhong Ding.;Paul Elliott.;Tõnu Esko.;Michele K Evans.;James S Floyd.;Linda Broer.;Niels Grarup.;Michael H Guo.;Andreas Greinacher.;Jeff Haessler.;Torben Hansen.;Joanna M M Howson.;Qin Qin Huang.;Wei Huang.;Eric Jorgenson.;Tim Kacprowski.;Mika Kähönen.;Yoichiro Kamatani.;Masahiro Kanai.;Savita Karthikeyan.;Fotis Koskeridis.;Leslie A Lange.;Terho Lehtimäki.;Markus M Lerch.;Allan Linneberg.;Yongmei Liu.;Leo-Pekka Lyytikäinen.;Ani Manichaikul.;Hilary C Martin.;Koichi Matsuda.;Karen L Mohlke.;Nina Mononen.;Yoshinori Murakami.;Girish N Nadkarni.;Matthias Nauck.;Kjell Nikus.;Willem H Ouwehand.;Nathan Pankratz.;Oluf Pedersen.;Michael Preuss.;Bruce M Psaty.;Olli T Raitakari.;David J Roberts.;Stephen S Rich.;Benjamin A T Rodriguez.;Jonathan D Rosen.;Jerome I Rotter.;Petra Schubert.;Cassandra N Spracklen.;Praveen Surendran.;Hua Tang.;Jean-Claude Tardif.;Richard C Trembath.;Mohsen Ghanbari.;Uwe Völker.;Henry Völzke.;Nicholas A Watkins.;Alan B Zonderman.; .;Peter W F Wilson.;Yun Li.;Adam S Butterworth.;Jean-François Gauchat.;Charleston W K Chiang.;Bingshan Li.;Ruth J F Loos.;William J Astle.;Evangelos Evangelou.;David A van Heel.;Vijay G Sankaran.;Yukinori Okada.;Nicole Soranzo.;Andrew D Johnson.;Alexander P Reiner.;Paul L Auer.;Guillaume Lettre.
来源: Cell. 2020年182卷5期1198-1213.e14页
Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.
共有 5 条符合本次的查询结果, 用时 5.6729783 秒