1203. The Heating Microenvironment: Intercellular Cross Talk Within Thermogenic Adipose Tissue.
Adipose tissue serves as the body's primary energy storage site; however, findings in recent decades have transformed our understanding of the multifaceted roles of this adaptable organ. The ability of adipose tissue to undergo energy expenditure through heat generation is termed adaptive thermogenesis, a process carried out by thermogenic adipocytes. Adipocytes are the primary parenchymal cell type in adipose tissue, yet these cells are sustained within a rich stromal vascular microenvironment comprised of adipose stem cells and progenitors, immune cells, neuronal cells, fibroblasts, and endothelial cells. Intricate cross talk between these diverse cell types is essential in regulating the activation of thermogenic fat, and the past decade has shed significant light on how this intercellular communication functions. This review will draw upon recent findings and current perspectives on the sophisticated repertoire of cellular and molecular features that comprise the adipose thermogenic milieu.
1204. Simultaneous Inhibition of Peripheral CB1R and iNOS Mitigates Obesity-Related Dyslipidemia Through Distinct Mechanisms.
作者: Célia Roger.;Chloé Buch.;Tania Muller.;Julia Leemput.;Laurent Demizieux.;Patricia Passilly-Degrace.;Resat Cinar.;Malliga R Iyer.;George Kunos.;Bruno Vergès.;Pascal Degrace.;Tony Jourdan.
来源: Diabetes. 2020年69卷10期2120-2132页
Diabetic dyslipidemia, characterized by increased plasma triglycerides and decreased HDL cholesterol levels, is a major factor contributing to nonalcoholic steatohepatitis and cardiovascular risk in type 2 diabetes. Activation of the cannabinoid-1 receptor (CB1R) and activation of inducible nitric oxide synthase (iNOS) are associated with nonalcoholic steatohepatitis progression. Here, we tested whether dual-targeting inhibition of hepatic CB1R and iNOS improves diabetic dyslipidemia in mice with diet-induced obesity (DIO mice). DIO mice were treated for 14 days with (S)-MRI-1867, a peripherally restricted hybrid inhibitor of CB1R and iNOS. (R)-MRI-1867, the CB1R-inactive stereoisomer that retains iNOS inhibitory activity, and JD-5037, a peripherally restricted CB1R antagonist, were used to assess the relative contribution of the two targets to the effects of (S)-MRI-1867. (S)-MRI-1867 reduced hepatic steatosis and the rate of hepatic VLDL secretion, upregulated hepatic LDLR expression, and reduced the circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9). The decrease in VLDL secretion could be attributed to CB1R blockade, while the reduction of PCSK9 levels and the related increase in LDLR resulted from iNOS inhibition via an mTOR complex 1-dependent mechanism. In conclusion, this approach based on the concomitant inhibition of CB1R and iNOS represents a promising therapeutic strategy for the treatment of dyslipidemia.
1205. Pancreatic Islets and Gestalt Principles.
作者: Michael P Dybala.;John K Butterfield.;Bryce K Hendren-Santiago.;Manami Hara.
来源: Diabetes. 2020年69卷9期1864-1874页
The human brain has inherent methodology to efficiently interpret complex environmental stimuli into understanding. This visual perception is governed by the law of simplicity, which is fundamental to Gestalt theory. First introduced in a seminal article by Wertheimer in 1923, the theory explains how the mind groups similar images and fills in gaps in order to perceive an amenable version of reality. The world we see consists of complex visual scenes, but rarely is the entire picture visible to us. Since it is inefficient for all visual data to be analyzed at once, certain patterns are given higher importance and made to stand out from the rest of the field in our brain. Here we propose that Gestalt theory may explain why rodent islet architecture has historically been seen as having a core-mantle arrangement. By filling in apparent gaps in the non-β-cell lining, the mind interprets it as a "whole" mantle, which may have further led to widely accepted notions regarding islet microcirculation, intra-islet signaling, and islet development. They are largely based on the prevailing stereotypic islet architecture in which an enclosed structure is presumed. Three-dimensional analysis provides more integrated views of islet and pancreatic microcirculation.
1206. SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes.
作者: Alexander G Obukhov.;Bruce R Stevens.;Ram Prasad.;Sergio Li Calzi.;Michael E Boulton.;Mohan K Raizada.;Gavin Y Oudit.;Maria B Grant.
来源: Diabetes. 2020年69卷9期1875-1886页
Individuals with diabetes suffering from coronavirus disease 2019 (COVID-19) exhibit increased morbidity and mortality compared with individuals without diabetes. In this Perspective, we critically evaluate and argue that this is due to a dysregulated renin-angiotensin system (RAS). Previously, we have shown that loss of angiotensin-I converting enzyme 2 (ACE2) promotes the ACE/angiotensin-II (Ang-II)/angiotensin type 1 receptor (AT1R) axis, a deleterious arm of RAS, unleashing its detrimental effects in diabetes. As suggested by the recent reports regarding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), upon entry into the host, this virus binds to the extracellular domain of ACE2 in nasal, lung, and gut epithelial cells through its spike glycoprotein subunit S1. We put forth the hypothesis that during this process, reduced ACE2 could result in clinical deterioration in COVID-19 patients with diabetes via aggravating Ang-II-dependent pathways and partly driving not only lung but also bone marrow and gastrointestinal pathology. In addition to systemic RAS, the pathophysiological response of the local RAS within the intestinal epithelium involves mechanisms distinct from that of RAS in the lung; however, both lung and gut are impacted by diabetes-induced bone marrow dysfunction. Careful targeting of the systemic and tissue RAS may optimize clinical outcomes in subjects with diabetes infected with SARS-CoV-2.
1207. Aging, Male Sex, Obesity, and Metabolic Inflammation Create the Perfect Storm for COVID-19.
Coronavirus disease 2019 (COVID-19) is a novel threat that seems to result from the collusion between a new pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and an existing pandemic of metabolic disease driven by obesity. This Perspective explores the evolving epidemiological, clinical, biological, and molecular evidence to propose an unfolding paradigm in which old age, chronic metabolic disease (such as obesity, type 2 diabetes, and metabolic syndrome), and male biological sex produce a deadly symbiosis of dysregulated immunometabolism and chronic systemic inflammation that intensifies virally induced hyperinflammation associated with SARS-CoV-2 infection. It is intended to inspire new research directions and stimulate funding in this field.
1208. Obesity Is Associated With Increased Basal and Postprandial β-Cell Insulin Secretion Even in the Absence of Insulin Resistance.
作者: Stephan van Vliet.;Han-Chow E Koh.;Bruce W Patterson.;Mihoko Yoshino.;Richard LaForest.;Robert J Gropler.;Samuel Klein.;Bettina Mittendorfer.
来源: Diabetes. 2020年69卷10期2112-2119页
We tested the hypothesis that obesity, independent of insulin resistance, is associated with increased insulin secretion. We compared insulin kinetics before and after glucose ingestion in lean healthy people and people with obesity who were matched on multiorgan insulin sensitivity (inhibition of adipose tissue lipolysis and glucose production and stimulation of muscle glucose uptake) as assessed by using a two-stage hyperinsulinemic-euglycemic pancreatic clamp procedure in conjunction with glucose and palmitate tracer infusions and positron emission tomography. We also evaluated the effect of diet-induced weight loss on insulin secretion in people with obesity who did not improve insulin sensitivity despite marked (∼20%) weight loss. Basal and postprandial insulin secretion rates were >50% greater in people with obesity than lean people even though insulin sensitivity was not different between groups. Weight loss in people with obesity decreased insulin secretion by 35% even though insulin sensitivity did not change. These results demonstrate that increased insulin secretion in people with obesity is associated with excess adiposity itself and is not simply a compensatory response to insulin resistance. These findings have important implications regarding the pathogenesis of diabetes because hyperinsulinemia causes insulin resistance and insulin hypersecretion is an independent risk factor for developing diabetes.
1209. Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus With Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells.
作者: Caterina Pipino.;Hetal Shah.;Sabrina Prudente.;Natalia Di Pietro.;Lixia Zeng.;Kyoungmin Park.;Vincenzo Trischitta.;Subramanian Pennathur.;Assunta Pandolfi.;Alessandro Doria.
来源: Diabetes. 2020年69卷10期2206-2216页
A chromosome 1q25 variant (rs10911021) has been associated with coronary heart disease (CHD) in type 2 diabetes. In human umbilical vein endothelial cells (HUVECs), the risk allele "C" is associated with lower expression of the adjacent gene GLUL encoding glutamine synthase, converting glutamic acid to glutamine. To further investigate the mechanisms through which this locus affects CHD risk, we measured 35 intracellular metabolites involved in glutamic acid metabolism and the γ-glutamyl cycle in 62 HUVEC strains carrying different rs10911021 genotypes. Eight metabolites were positively associated with the risk allele (17-58% increase/allele copy, P = 0.046-0.002), including five γ-glutamyl amino acids, β-citryl-glutamate, N-acetyl-aspartyl-glutamate, and ophthalmate-a marker of γ-glutamyl cycle malfunction. Consistent with these findings, the risk allele was also associated with decreased glutathione-to-glutamate ratio (-9%, P = 0.012), decreased S-lactoylglutathione (-41%, P = 0.019), and reduced detoxification of the atherogenic compound methylglyoxal (+54%, P = 0.008). GLUL downregulation by shRNA caused a 40% increase in the methylglyoxal level, which was completely prevented by glutamine supplementation. In summary, we have identified intracellular metabolic traits associated with the 1q25 risk allele in HUVECs, including impairments of the γ-glutamyl cycle and methylglyoxal detoxification. Glutamine supplementation abolishes the latter abnormality, suggesting that such treatment may prevent CHD in 1q25 risk allele carriers.
1210. DW14006 as a Direct AMPKα Activator Ameliorates Diabetic Peripheral Neuropathy in Mice.
作者: Xu Xu.;Wei Wang.;Zhengyu Wang.;Jianlu Lv.;Xiaoju Xu.;Jiawen Xu.;Juanzhen Yang.;Xialin Zhu.;Yin Lu.;Wenhu Duan.;Xi Huang.;Jiaying Wang.;Jinpei Zhou.;Xu Shen.
来源: Diabetes. 2020年69卷9期1974-1988页
Diabetic peripheral neuropathy (DPN) is a long-term complication of diabetes with a complicated pathogenesis. AMP-activated protein kinase (AMPK) senses oxidative stress, and mitochondrial function plays a central role in the regulation of DPN. Here, we reported that DW14006 (2-[3-(7-chloro-6-[2'-hydroxy-(1,1'-biphenyl)-4-yl]-2-oxo-1,2-dihydroquinolin-3-yl)phenyl]acetic acid) as a direct AMPKα activator efficiently ameliorated DPN in both streptozotocin (STZ)-induced type 1 and BKS db/db type 2 diabetic mice. DW14006 administration highly enhanced neurite outgrowth of dorsal root ganglion neurons and improved neurological function in diabetic mice. The underlying mechanisms have been intensively investigated. DW14006 treatment improved mitochondrial bioenergetics profiles and restrained oxidative stress and inflammation in diabetic mice by targeting AMPKα, which has been verified by assay against the STZ-induced diabetic mice injected with adeno-associated virus 8-AMPKα-RNAi. To our knowledge, our work might be the first report on the amelioration of the direct AMPKα activator on DPN by counteracting multiple risk factors including mitochondrial dysfunction, oxidative stress, and inflammation, and DW14006 has been highlighted as a potential leading compound in the treatment of DPN.
1211. WDFY2 Potentiates Hepatic Insulin Sensitivity and Controls Endosomal Localization of the Insulin Receptor and IRS1/2.
作者: Luyao Zhang.;Xue Li.;Nan Zhang.;Xin Yang.;Tianyun Hou.;Wan Fu.;Fengjie Yuan.;Lina Wang.;He Wen.;Yuan Tian.;Hongquan Zhang.;Xifeng Lu.;Wei-Guo Zhu.
来源: Diabetes. 2020年69卷9期1887-1902页
Endosomes help activate the hepatic insulin-evoked Akt signaling pathway, but the underlying regulatory mechanisms are unclear. Previous studies have suggested that the endosome-located protein WD repeat and FYVE domain-containing 2 (WDFY2) might be involved in metabolic disorders, such as diabetes. Here, we generated Wdfy2 knockout (KO) mice and assessed the metabolic consequences. These KO mice exhibited systemic insulin resistance, with increased gluconeogenesis and suppressed glycogen accumulation in the liver. Mechanistically, we found that the insulin-stimulated activation of Akt2 and its substrates FoxO1 and GSK-3β is attenuated in the Wdfy2 KO liver and H2.35 hepatocytes, suggesting that WDFY2 acts as an important regulator of hepatic Akt2 signaling. We further found that WDFY2 interacts with the insulin receptor (INSR) via its WD1-4 domain and localizes the INSR to endosomes after insulin stimulation. This process ensures that the downstream insulin receptor substrates 1 and 2 (IRS1/2) can be recruited to the endosomal INSR. IRS1/2-INSR binding promotes IRS1/2 phosphorylation and subsequent activation, initiating downstream Akt2 signaling in the liver. Interestingly, adeno-associated viral WDFY2 delivery ameliorated metabolic defects in db/db mice. These findings demonstrate that WDFY2 activates insulin-evoked Akt2 signaling by controlling endosomal localization of the INSR and IRS1/2 in hepatocytes. This pathway might constitute a new potential target for diabetes prevention or treatment.
1212. Obesity-Induced Increase in Cystatin C Alleviates Tissue Inflammation.
作者: Mara A Dedual.;Stephan Wueest.;Tenagne D Challa.;Fabrizio C Lucchini.;Tim R J Aeppli.;Marcela Borsigova.;Andrea A Mauracher.;Stefano Vavassori.;Jana Pachlopnik Schmid.;Matthias Blüher.;Daniel Konrad.
来源: Diabetes. 2020年69卷9期1927-1935页
We recently demonstrated that removal of one kidney (uninephrectomy [UniNx]) in mice reduced high-fat diet (HFD)-induced adipose tissue inflammation, thereby improving adipose tissue and hepatic insulin sensitivity. Of note, circulating cystatin C (CysC) levels were increased in UniNx compared with sham-operated mice. Importantly, CysC may have anti-inflammatory properties, and circulating CysC levels were reported to positively correlate with obesity in humans and as shown here in HFD-fed mice. However, the causal relationship of such observation remains unclear. HFD feeding of CysC-deficient (CysC knockout [KO]) mice worsened obesity-associated adipose tissue inflammation and dysfunction, as assessed by proinflammatory macrophage accumulation. In addition, mRNA expression of proinflammatory mediators was increased, whereas markers of adipocyte differentiation were decreased. Similar to findings in adipose tissue, expression of proinflammatory cytokines was increased in liver and skeletal muscle of CysC KO mice. In line, HFD-induced hepatic insulin resistance and impairment of glucose tolerance were further aggravated in KO mice. Consistently, chow-fed CysC KO mice were more susceptible to lipopolysaccharide-induced adipose tissue inflammation. In people with obesity, circulating CysC levels correlated negatively with adipose tissue Hif1α as well as IL6 mRNA expression. Moreover, healthy (i.e., insulin-sensitive) subjects with obesity had significantly higher mRNA expression of CysC in white adipose tissue. In conclusion, CysC is upregulated under obesity conditions and thereby counteracts inflammation of peripheral insulin-sensitive tissues and, thus, obesity-associated deterioration of glucose metabolism.
1213. A Small Molecule, UAB126, Reverses Diet-Induced Obesity and its Associated Metabolic Disorders.
作者: Guang Ren.;Teayoun Kim.;Hae-Suk Kim.;Martin E Young.;Donald D Muccio.;Venkatram R Atigadda.;Samuel I Blum.;Hubert M Tse.;Kirk M Habegger.;Sushant Bhatnagar.;Tatjana Coric.;Mary-Ann Bjornsti.;Anath Shalev.;Stuart J Frank.;Jeong-A Kim.
来源: Diabetes. 2020年69卷9期2003-2016页
Targeting retinoid X receptor (RXR) has been proposed as one of the therapeutic strategies to treat individuals with metabolic syndrome, as RXR heterodimerizes with multiple nuclear receptors that regulate genes involved in metabolism. Despite numerous efforts, RXR ligands (rexinoids) have not been approved for clinical trials to treat metabolic syndrome due to the serious side effects such as hypertriglyceridemia and altered thyroid hormone axis. In this study, we demonstrate a novel rexinoid-like small molecule, UAB126, which has positive effects on metabolic syndrome without the known side effects of potent rexinoids. Oral administration of UAB126 ameliorated obesity, insulin resistance, hepatic steatosis, and hyperlipidemia without changes in food intake, physical activity, and thyroid hormone levels. RNA-sequencing analysis revealed that UAB126 regulates the expression of genes in the liver that are modulated by several nuclear receptors, including peroxisome proliferator-activated receptor α and/or liver X receptor in conjunction with RXR. Furthermore, UAB126 not only prevented but also reversed obesity-associated metabolic disorders. The results suggest that optimized modulation of RXR may be a promising strategy to treat metabolic disorders without side effects. Thus, the current study reveals that UAB126 could be an attractive therapy to treat individuals with obesity and its comorbidities.
1214. 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism.
作者: Mona S Nilsen.;Regine Å Jersin.;Arve Ulvik.;André Madsen.;Adrian McCann.;Per-Arne Svensson.;Maria K Svensson.;Bjørn G Nedrebø.;Oddrun A Gudbrandsen.;Grethe S Tell.;C R Kahn.;Per M Ueland.;Gunnar Mellgren.;Simon N Dankel.
来源: Diabetes. 2020年69卷9期1903-1916页
Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
1215. Localized Immunosuppression With Tannic Acid Encapsulation Delays Islet Allograft and Autoimmune-Mediated Rejection.
作者: Jessie M Barra.;Veronika Kozlovskaya.;Eugenia Kharlampieva.;Hubert M Tse.
来源: Diabetes. 2020年69卷9期1948-1960页
Type 1 diabetes (T1D) is an autoimmune disease of insulin-producing β-cells. Islet transplantation is a promising treatment for T1D, but long-term graft viability and function remain challenging. Oxidative stress plays a key role in the activation of alloreactive and autoreactive immunity toward the engrafted islets. Therefore, targeting these pathways by encapsulating islets with an antioxidant may delay immune-mediated rejection. Utilizing a layer-by-layer approach, we generated nanothin encapsulation materials containing tannic acid (TA), a polyphenolic compound with redox scavenging and anti-inflammatory effects, and poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer. We hypothesize that transplantation of PVPON/TA-encapsulated allogeneic C57BL/6 islets into diabetic NOD mice will prolong graft function and elicit localized immunosuppression. In the absence of systemic immunosuppression, diabetic recipients containing PVPON/TA-encapsulated islets maintained euglycemia and delayed graft rejection significantly longer than those receiving nonencapsulated islets. Transplantation of PVPON/TA-encapsulated islets was immunomodulatory because gene expression and flow cytometric analysis revealed significantly decreased immune cell infiltration, synthesis of reactive oxygen species, inflammatory chemokines, cytokines, CD8 T-cell effector responses, and concomitant increases in alternatively activated M2 macrophage and dendritic cell phenotypes. Our results provide evidence that reducing oxidative stress following allotransplantation of PVPON/TA-encapsulated islets can elicit localized immunosuppression and potentially delay graft destruction in future human islet transplantation studies.
1219. T-Cell Epitopes and Neo-epitopes in Type 1 Diabetes: A Comprehensive Update and Reappraisal.
作者: Eddie A James.;Roberto Mallone.;Sally C Kent.;Teresa P DiLorenzo.
来源: Diabetes. 2020年69卷7期1311-1335页
The autoimmune disease type 1 diabetes is characterized by effector T-cell responses to pancreatic β-cell-derived peptides presented by HLA class I and class II molecules, leading ultimately to β-cell demise and insulin insufficiency. Although a given HLA molecule presents a vast array of peptides, only those recognized by T cells are designated as epitopes. Given their intimate link to etiology, the discovery and characterization of T-cell epitopes is a critical aspect of type 1 diabetes research. Understanding epitope recognition is also crucial for the pursuit of antigen-specific immunotherapies and implementation of strategies for T-cell monitoring. For these reasons, a cataloging and appraisal of the T-cell epitopes targeted in type 1 diabetes was completed over a decade ago, providing an important resource for both the research and the clinical communities. Here we present a much needed update and reappraisal of this earlier work and include online supplementary material where we cross-index each epitope with its primary references and Immune Epitope Database (IEDB) identifier. Our analysis includes a grading scale to score the degree of evidence available for each epitope, which conveys our perspective on several useful criteria for epitope evaluation. While providing an efficient summary of the arguably impressive current state of knowledge, this work also brings to light several deficiencies. These include the need for improved epitope validation, as few epitopes score highly by the criteria employed, and the dearth of investigations of the epitopes recognized in the context of several understudied type 1 diabetes-associated HLA molecules.
1220. Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation.
作者: Kung-Hsien Ho.;Xiaodun Yang.;Anna B Osipovich.;Over Cabrera.;Mansuo L Hayashi.;Mark A Magnuson.;Guoqiang Gu.;Irina Kaverina.
来源: Diabetes. 2020年69卷9期1936-1947页
The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.
|