1041. Deficits in the Skeletal Muscle Transcriptome and Mitochondrial Coupling in Progressive Diabetes-Induced CKD Relate to Functional Decline.
作者: Daniel C Bittel.;Adam J Bittel.;Arun S Varadhachary.;Terri Pietka.;David R Sinacore.
来源: Diabetes. 2021年70卷5期1130-1144页
Two-thirds of people with type 2 diabetes mellitus (T2DM) have or will develop chronic kidney disease (CKD), which is characterized by rapid renal decline that, together with superimposed T2DM-related metabolic sequelae, synergistically promotes early frailty and mobility deficits that increase the risk of mortality. Distinguishing the mechanisms linking renal decline to mobility deficits in CKD progression and/or increasing severity in T2DM is instrumental both in identifying those at high risk for functional decline and in formulating effective treatment strategies to prevent renal failure. While evidence suggests that skeletal muscle energetics may relate to the development of these comorbidities in advanced CKD, this has never been assessed across the spectrum of CKD progression, especially in T2DM-induced CKD. Here, using next-generation sequencing, we first report significant downregulation in transcriptional networks governing oxidative phosphorylation, coupled electron transport, electron transport chain (ETC) complex assembly, and mitochondrial organization in both middle- and late-stage CKD in T2DM. Furthermore, muscle mitochondrial coupling is impaired as early as stage 3 CKD, with additional deficits in ETC respiration, enzymatic activity, and increased redox leak. Moreover, mitochondrial ETC function and coupling strongly relate to muscle performance and physical function. Our results indicate that T2DM-induced CKD progression impairs physical function, with implications for altered metabolic transcriptional networks and mitochondrial functional deficits as primary mechanistic factors early in CKD progression in T2DM.
1042. Cell Cycle Regulation of the Pdx1 Transcription Factor in Developing Pancreas and Insulin-Producing β-Cells.
作者: Xiaodong Zhu.;Alexis Oguh.;Morgan A Gingerich.;Scott A Soleimanpour.;Doris A Stoffers.;Maureen Gannon.
来源: Diabetes. 2021年70卷4期903-916页
Current evidence indicates that proliferating β-cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for β-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized β-cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In nonmitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, or most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes before Ki67 coating of the chromosome surface. Pdx1 uniformly localizes in the cytoplasm at prometaphase and becomes enriched around the chromosomes again at the end of cell division, before nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and overexpression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle-dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein levels are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in β-cell function and proliferation.
1043. Syntaxin 4 Mediates NF-κB Signaling and Chemokine Ligand Expression via Specific Interaction With IκBβ.
作者: Rajakrishnan Veluthakal.;Eunjin Oh.;Miwon Ahn.;Diti Chatterjee Bhowmick.;Debbie C Thurmond.
来源: Diabetes. 2021年70卷4期889-902页
Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBβ but not IκBα. Inhibition of IKKβ prevented IκBβ degradation, suggesting that IKKβ phosphorylates IκBβ. Moreover, the IKKβ inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKβ in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBβ from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBβ and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in β-cells via associating with and preventing IκBβ degradation, suppressing chemokine expression, and protecting islet β-cells from cytokine-mediated dysfunction and demise.
1044. Erratum. Impaired Metabolic Flexibility to High-Fat Overfeeding Predicts Future Weight Gain in Healthy Adults. Diabetes 2020;69:181-192.
作者: Brittany Begaye.;Karyne L Vinales.;Tim Hollstein.;Takafumi Ando.;Mary Walter.;Clifton Bogardus.;Jonathan Krakoff.;Paolo Piaggi.
来源: Diabetes. 2021年70卷4期1019页 1045. Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress.
作者: Hossam Montaser.;Kashyap A Patel.;Diego Balboa.;Hazem Ibrahim.;Väinö Lithovius.;Anna Näätänen.;Vikash Chandra.;Korcan Demir.;Sezer Acar.;Tawfeg Ben-Omran.;Kevin Colclough.;Jonathan M Locke.;Matthew Wakeling.;Maria Lindahl.;Andrew T Hattersley.;Jonna Saarimäki-Vire.;Timo Otonkoski.
来源: Diabetes. 2021年70卷4期1006-1018页
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse β-cells, its precise role in human β-cell development and function is unknown. In this study, we show that lack of MANF in humans results in diabetes due to increased ER stress, leading to impaired β-cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the MANF gene. To study the role of MANF in human β-cell development and function, we knocked out the MANF gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of MANF induced mild ER stress and impaired insulin-processing capacity of β-cells in vitro. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in recipients with diabetes. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human β-cell function and demonstrate the crucial role of MANF in this process.
1046. Longitudinal Assessment of 11C-5-Hydroxytryptophan Uptake in Pancreas After Debut of Type 1 Diabetes.
作者: Daniel Espes.;Per-Ola Carlsson.;Ram Kumar Selvaraju.;Maria Rosestedt.;Pierre Cheung.;Håkan Ahlström.;Olle Korsgren.;Olof Eriksson.
来源: Diabetes. 2021年70卷4期966-975页
The longitudinal alterations of the pancreatic β-cell and islet mass in the progression of type 1 diabetes (T1D) are still poorly understood. The objective of this study was to repeatedly assess the endocrine volume and the morphology of the pancreas for up to 24 months after T1D diagnosis (n = 16), by 11C-5-hydroxytryptophan (11C-5-HTP) positron emission tomography (PET) and MRI. Study participants were examined four times by PET/MRI: at recruitment and then after 6, 12, and 24 months. Clinical examinations and assessment of β-cell function by a mixed-meal tolerance test and fasting blood samples were performed in connection with the imaging examination. Pancreas volume has a tendency to decrease from 50.2 ± 10.3 mL at T1D debut to 42.2 ± 14.6 mL after 24 months (P < 0.098). Pancreas uptake of 11C-5-HTP (e.g., the volume of the endocrine pancreas) did not decrease from T1D diagnosis (0.23 ± 0.10 % of injected dose) to 24-month follow-up, 0.21 ± 0.14% of injected dose, and exhibited low interindividual changes. Pancreas perfusion was unchanged from diagnosis to 24-month follow-up. The pancreas uptake of 11C-5-HTP correlated with the long-term metabolic control as estimated by HbA1c (P < 0.05). Our findings argue against a major destruction of β-cell or islet mass in the 2-year period after diagnosis of T1D.
1047. The First Genome-Wide Association Study for Type 2 Diabetes in Youth: The Progress in Diabetes Genetics in Youth (ProDiGY) Consortium.
作者: Shylaja Srinivasan.;Ling Chen.;Jennifer Todd.;Jasmin Divers.;Samuel Gidding.;Steven Chernausek.;Rose A Gubitosi-Klug.;Megan M Kelsey.;Rachana Shah.;Mary Helen Black.;Lynne E Wagenknecht.;Alisa Manning.;Jason Flannick.;Giuseppina Imperatore.;Josep M Mercader.;Dana Dabelea.;Jose C Florez.; .
来源: Diabetes. 2021年70卷4期996-1005页
The prevalence of type 2 diabetes in youth has increased substantially, yet the genetic underpinnings remain largely unexplored. To identify genetic variants predisposing to youth-onset type 2 diabetes, we formed ProDiGY, a multiethnic collaboration of three studies (TODAY, SEARCH, and T2D-GENES) with 3,006 youth case subjects with type 2 diabetes (mean age 15.1 ± 2.9 years) and 6,061 diabetes-free adult control subjects (mean age 54.2 ± 12.4 years). After stratifying by principal component-clustered ethnicity, we performed association analyses on ∼10 million imputed variants using a generalized linear mixed model incorporating a genetic relationship matrix to account for population structure and adjusting for sex. We identified seven genome-wide significant loci, including the novel locus rs10992863 in PHF2 (P = 3.2 × 10-8; odds ratio [OR] = 1.23). Known loci identified in our analysis include rs7903146 in TCF7L2 (P = 8.0 × 10-20; OR 1.58), rs72982988 near MC4R (P = 4.4 × 10-14; OR 1.53), rs200893788 in CDC123 (P = 1.1 × 10-12; OR 1.32), rs2237892 in KCNQ1 (P = 4.8 × 10-11; OR 1.59), rs937589119 in IGF2BP2 (P = 3.1 × 10-9; OR 1.34), and rs113748381 in SLC16A11 (P = 4.1 × 10-8; OR 1.04). Secondary analysis with 856 diabetes-free youth control subjects uncovered an additional locus in CPEB2 (P = 3.2 × 10-8; OR 2.1) and consistent direction of effect for diabetes risk. In conclusion, we identified both known and novel loci in the first genome-wide association study of youth-onset type 2 diabetes.
1048. Impaired Activated/Memory Regulatory T Cell Clonal Expansion Instigates Diabetes in NOD Mice.
作者: Vanessa Mhanna.;Gwladys Fourcade.;Pierre Barennes.;Valentin Quiniou.;Hang P Pham.;Paul-Gydeon Ritvo.;Faustine Brimaud.;Bruno Gouritin.;Guillaume Churlaud.;Adrien Six.;Encarnita Mariotti-Ferrandiz.;David Klatzmann.
来源: Diabetes. 2021年70卷4期976-985页
Regulatory T cell (Treg) insufficiency licenses the destruction of insulin-producing pancreatic β-cells by autoreactive effector T cells (Teffs), causing spontaneous autoimmune diabetes in NOD mice. We investigated the contribution to diabetes of the T-cell receptor (TCR) repertoires of naive regulatory T cells (nTregs), activated/memory Tregs (amTregs), and CD4+ Teffs from prediabetic NOD mice and normal C57BL/6 (B6) mice. NOD mice amTreg and Teff repertoire diversity was unexpectedly higher than that of B6 mice. This was due to the presence of highly expanded clonotypes in B6 amTregs and Teffs that were largely lost in their NOD counterparts. Interleukin-2 (IL-2) administration to NOD mice restored such amTreg clonotype expansions and prevented diabetes development. In contrast, IL-2 administration only led to few or no clonotype expansions in nTregs and Teffs, respectively. Noteworthily, IL-2-expanded amTreg and nTreg clonotypes were markedly enriched in islet-antigen specific TCRs. Altogether, our results highlight the link between a reduced clonotype expansion within the activated Treg repertoire and the development of an autoimmune disease. They also indicate that the repertoire of amTregs is amenable to rejuvenation by IL-2.
1051. circRNA_010383 Acts as a Sponge for miR-135a, and Its Downregulated Expression Contributes to Renal Fibrosis in Diabetic Nephropathy.
作者: Fenfen Peng.;Wangqiu Gong.;Shuting Li.;Bohui Yin.;Chen Zhao.;Wenting Liu.;Xiaowen Chen.;Congwei Luo.;Qianying Huang.;Ting Chen.;Lingzhi Sun.;Shun Fang.;Weidong Zhou.;Zhijian Li.;Haibo Long.
来源: Diabetes. 2021年70卷2期603-615页
Diabetic nephropathy (DN), a vascular complication of diabetes, is the leading cause of death in patients with diabetes. The contribution of aberrantly expressed circular RNAs (circRNAs) to DN in vivo is poorly understood. Integrated comparative circRNA microarray profiling was used to examine the expression of circRNAs in diabetic kidney of db/db mice. We found that circRNA_010383 expression was markedly downregulated in diabetic kidneys, mesangial cells, and tubular epithelial cells cultured in high-glucose conditions. circRNA_010383 colocalized with miRNA-135a (miR-135a) and inhibited miR-135a function by directly binding to miR-135a. In vitro, the knockdown of circRNA_010383 promoted the accumulation of extracellular matrix (ECM) proteins and downregulated the expression of transient receptor potential cation channel, subfamily C, member 1 (TRPC1), which is a target protein of miR-135a. Furthermore, circRNA_010383 overexpression effectively inhibited the high-glucose-induced accumulation of ECM and increased TRPC1 levels in vitro. More importantly, the kidney target of circRNA_010383 overexpression inhibited proteinuria and renal fibrosis in db/db mice. Mechanistically, we identified that a loss of circRNA_010383 promoted proteinuria and renal fibrosis in DN by acting as a sponge for miR-135a. This study reveals that circRNA_010383 may be a novel therapeutic target for DN in the future.
1052. Building Biomimetic Potency Tests for Islet Transplantation.
作者: Aaron L Glieberman.;Benjamin D Pope.;Douglas A Melton.;Kevin Kit Parker.
来源: Diabetes. 2021年70卷2期347-363页
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
1053. A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture.
Insulin resistance and β-cell dysfunction are the core pathophysiological mechanisms of all hyperglycemic syndromes. Advances in in vivo investigative techniques have made it possible to quantify insulin resistance in multiple sites (skeletal and myocardial muscle, subcutaneous and visceral fat depots, liver, kidney, vascular tissues, brain and intestine), to clarify its consequences for tissue substrate selection, and to establish its relation to tissue perfusion. Physiological modeling of β-cell function has provided a uniform tool to measure β-cell glucose sensitivity and potentiation in response to a variety of secretory stimuli, thereby allowing us to establish feedbacks with insulin resistance, to delineate the biphasic time course of conversion to diabetes, to gauge incretin effects, and to identify primary insulin hypersecretion. As insulin resistance also characterizes several of the comorbidities of diabetes (e.g., obesity, hypertension, dyslipidemia), with shared genetic and acquired influences, the concept is put forward that diabetes is a systemic disease from the outset, actually from the prediabetic stage. In fact, early multifactorial therapy, particularly with newer antihyperglycemic agents, has shown that the burden of micro- and macrovascular complications can be favorably modified despite the rising pressure imposed by protracted obesity.
1054. Epigenetic Mechanisms in Diabetic Vascular Complications and Metabolic Memory: The 2020 Edwin Bierman Award Lecture.
Macrovascular complications such as atherosclerosis, myocardial infarction and stroke, and microvascular complications such as nephropathy, retinopathy, and neuropathy are the major causes of increased morbidity and mortality in both type 1 and type 2 diabetes. Increased inflammation, oxidative stress, and fibrosis are common features in most diabetes complications. Although extensive studies have examined the biochemical pathways leading to the expression of inflammatory, profibrotic, and other pathological genes, as well as genetic factors related to diabetes and associated complications, much less is known about the contribution of epigenetic changes that occur without alterations in the DNA sequence. Environmental factors, lifestyles, and improper diet implicated in diabetes can affect epigenetic states. Epigenetic modifications, including DNA methylation and histone modifications, can alter gene transcription in response to environmental stimuli and cooperate with noncoding RNAs. These epigenetic modifications have been observed in various target cells under diabetic conditions. Moreover, epigenetics has also been implicated in the phenomenon of metabolic memory observed in clinic trials and animal studies, in which prior episodes of poor glycemic control can confer continued risk of complications despite subsequent glucose normalization. Epigenome-wide association studies in cohorts with diabetes are uncovering epigenotype variations that provide new insights into diabetic vascular complications. Here, I discuss the role of epigenetics and noncoding RNAs in diabetes complications and metabolic memory, and their translation potential to serve as biomarkers and drug targets to improve clinical management of diabetic vascular complications.
1055. Modulation of Leukocytes of the Innate Arm of the Immune System as a Potential Approach to Prevent the Onset and Progression of Type 1 Diabetes.
作者: Alessandra Petrelli.;Mark A Atkinson.;Massimo Pietropaolo.;Nick Giannoukakis.
来源: Diabetes. 2021年70卷2期313-322页
Type 1 diabetes (T1D) is characterized by insulin deficiency resulting from the selective destruction of pancreatic β-cells by self-reactive T cells. Recent evidence demonstrates that innate immune responses substantially contribute to the pathogenesis of T1D, as they represent a first line of response to danger/damage signals. Here we discuss evidence on how, in a relapsing-remitting pattern, pancreas remodeling, diet, microbiota, gut permeability, and viral/bacterial infections induce the accumulation of leukocytes of the innate arm of the immune system throughout the pancreas. The subsequent acquisition and presentation of endocrine and exocrine antigens to the adaptive arm of the immune system results in a chronic progression of pancreatic damage. This process provides for the generation of self-reactive T-cell responses; however, the relative weight that genetic and environmental factors have on the etiopathogenesis of T1D is endotype imprinted and patient specific. With this Perspectives in Diabetes, our goal is to encourage the scientific community to rethink mechanisms underlying T1D pathogenesis and to consider therapeutic approaches that focus on these processes in intervention trials within new-onset disease as well as in efforts seeking the disorder's prevention in individuals at high risk.
1056. Emerging Role of Bone Morphogenetic Protein 4 in Metabolic Disorders.
Bone morphogenetic proteins (BMPs) are a group of signaling molecules that belong to the TGF-β superfamily. Initially discovered for their ability to induce bone formation, BMPs are known to play a diverse and critical array of biological roles. We here focus on recent evidence showing that BMP4 is an important regulator of white/beige adipogenic differentiation with important consequences for thermogenesis, energy homeostasis, and development of obesity in vivo. BMP4 is highly expressed in, and released by, human adipose tissue, and serum levels are increased in obesity. Recent studies have now shown BMP4 to play an important role not only for white/beige/brown adipocyte differentiation and thermogenesis but also in regulating systemic glucose homeostasis and insulin sensitivity. It also has important suppressive effects on hepatic glucose production and lipid metabolism. Cellular BMP4 signaling/action is regulated by both ambient cell/systemic levels and several endogenous and systemic BMP antagonists. Reduced BMP4 signaling/action can contribute to the development of obesity, insulin resistance, and associated metabolic disorders. In this article, we summarize the pleiotropic functions of BMP4 in the pathophysiology of these diseases and also consider the therapeutic implications of targeting BMP4 in the prevention/treatment of obesity and its associated complications.
1057. Dynamic Uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets.
作者: Manon Jaffredo.;Eléonore Bertin.;Antoine Pirog.;Emilie Puginier.;Julien Gaitan.;Sandra Oucherif.;Fanny Lebreton.;Domenico Bosco.;Bogdan Catargi.;Daniel Cattaert.;Sylvie Renaud.;Jochen Lang.;Matthieu Raoux.
来源: Diabetes. 2021年70卷4期878-888页
Biphasic secretion is an autonomous feature of many endocrine micro-organs to fulfill physiological demands. The biphasic activity of islet β-cells maintains glucose homeostasis and is altered in type 2 diabetes. Nevertheless, underlying cellular or multicellular functional organizations are only partially understood. High-resolution noninvasive multielectrode array recordings permit simultaneous analysis of recruitment, of single-cell, and of coupling activity within entire islets in long-time experiments. Using this unbiased approach, we addressed the organizational modes of both first and second phase in mouse and human islets under physiological and pathophysiological conditions. Our data provide a new uni- and multicellular model of islet β-cell activation: during the first phase, small but highly active β-cell clusters are dominant, whereas during the second phase, electrical coupling generates large functional clusters via multicellular slow potentials to favor an economic sustained activity. Postprandial levels of glucagon-like peptide 1 favor coupling only in the second phase, whereas aging and glucotoxicity alter coupled activity in both phases. In summary, biphasic activity is encoded upstream of vesicle pools at the micro-organ level by multicellular electrical signals and their dynamic synchronization between β-cells. The profound alteration of the electrical organization of islets in pathophysiological conditions may contribute to functional deficits in type 2 diabetes.
1058. Soluble Antigen Arrays Efficiently Deliver Peptides and Arrest Spontaneous Autoimmune Diabetes.
作者: Rebuma Firdessa-Fite.;Stephanie N Johnson.;Martin A Leon.;Mohsen Khosravi-Maharlooei.;Rocky L Baker.;Joshua O Sestak.;Cory Berkland.;Remi J Creusot.
来源: Diabetes. 2021年70卷6期1334-1346页
Antigen-specific immunotherapy (ASIT) offers a targeted treatment of autoimmune diseases that selectively inhibits autoreactive lymphocytes, but there remains an unmet need for approaches that address the limited clinical efficacy of ASIT. Soluble antigen arrays (SAgAs) deliver antigenic peptides or proteins in multivalent form, attached to a hyaluronic acid backbone using either hydrolysable linkers (hSAgAs) or stable click chemistry linkers (cSAgAs). They were evaluated for the ability to block spontaneous development of disease in a nonobese diabetic mouse model of type 1 diabetes (T1D). Two peptides, a hybrid insulin peptide and a mimotope, efficiently prevented the onset of T1D when delivered in combination as SAgAs, but not individually. Relative to free peptides administered at equimolar dose, SAgAs (particularly cSAgAs) enabled a more effective engagement of antigen-specific T cells with greater persistence and induction of tolerance markers, such as CD73, interleukin-10, programmed death-1, and KLRG-1. Anaphylaxis caused by free peptides was attenuated using hSAgA and obviated using cSAgA platforms. Despite similarities, the two peptides elicited largely nonoverlapping and possibly complementary responses among endogenous T cells in treated mice. Thus, SAgAs offer a novel and promising ASIT platform superior to free peptides in inducing tolerance while mitigating risks of anaphylaxis for the treatment of T1D.
1059. Erratum. Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion. Diabetes 2015;64:733-745.
作者: Zoi Michailidou.;Nicholas M Morton.;José Maria Moreno Navarrete.;Christopher C West.;Kenneth J Stewart.;José Manuel Fernández-Real.;Christopher J Schofield.;Jonathan R Seckl.;Peter J Ratcliffe.
来源: Diabetes. 2021年70卷3期818页 1060. Exocrine Pancreatic Enzymes Are a Serological Biomarker for Type 1 Diabetes Staging and Pancreas Size.
作者: James J Ross.;Clive H Wasserfall.;Rhonda Bacher.;Daniel J Perry.;Kieran McGrail.;Amanda L Posgai.;Xiaoru Dong.;Andrew Muir.;Xia Li.;Martha Campbell-Thompson.;Todd M Brusko.;Desmond A Schatz.;Michael J Haller.;Mark A Atkinson.
来源: Diabetes. 2021年70卷4期944-954页
Exocrine pancreas abnormalities are increasingly recognized as features of type 1 diabetes. We previously reported reduced serum trypsinogen levels and in a separate study, smaller pancreata at and before disease onset. We hypothesized that three pancreas enzymes (amylase, lipase, and trypsinogen) might serve as serological biomarkers of pancreas volume and risk for type 1 diabetes. Amylase, lipase, and trypsinogen were measured from two independent cohorts, together comprising 800 serum samples from single-autoantibody-positive (1AAb+) and multiple-AAb+ (≥2AAb+) subjects, individuals with recent-onset or established type 1 diabetes, their AAb-negative (AAb-) first-degree relatives, and AAb- control subjects. Lipase and trypsinogen were significantly reduced in ≥2AAb+, recent-onset, and established type 1 diabetes subjects versus control subjects and 1AAb+, while amylase was reduced only in established type 1 diabetes. Logistic regression models demonstrated trypsinogen plus lipase (area under the receiver operating characteristic curve [AUROC] = 81.4%) performed equivalently to all three enzymes (AUROC = 81.4%) in categorizing ≥2AAb+ versus 1AAb+ subjects. For cohort 2 (n = 246), linear regression demonstrated lipase and trypsinogen levels could individually and collectively serve as indicators of BMI-normalized relative pancreas volume (RPVBMI, P < 0.001), previously measured by MRI. Serum lipase and trypsinogen levels together provide the most sensitive serological biomarker of RPVBMI and may improve disease staging in pretype 1 diabetes.
|