65. Observing anyonization of bosons in a quantum gas.
作者: Sudipta Dhar.;Botao Wang.;Milena Horvath.;Amit Vashisht.;Yi Zeng.;Mikhail B Zvonarev.;Nathan Goldman.;Yanliang Guo.;Manuele Landini.;Hanns-Christoph Nägerl.
来源: Nature. 2025年
Anyons1,2 are low-dimensional quasiparticles that obey fractional statistics, hence interpolating between bosons and fermions. In two dimensions, they exist as elementary excitations of fractional quantum Hall states3-5 and are believed to enable topological quantum computing6,7. One-dimensional anyons have been theoretically proposed, but their experimental realization has proven to be difficult. Here we observed emergent anyonic correlations in a one-dimensional strongly interacting quantum gas, resulting from the phenomenon of spin-charge separation8-10. A mobile impurity provides the necessary spin degree of freedom to engineer anyonic correlations in the charge sector and simultaneously acts as a probe to reveal these correlations. Starting with bosons, we tune the statistical phase to transmute bosons through anyons to fermions and observe an asymmetric momentum distribution11-14, a hallmark of anyonic correlations. Going beyond equilibrium conditions, we observed dynamical fermionization of the anyons15. This study opens the door to the exploration of non-equilibrium anyonic phenomena in a highly controllable setting15-17.
74. A coordinated cellular network regulates tolerance to food.
作者: Anna Rudnitsky.;Hanna Oh.;Maya Margolin.;Bareket Dassa.;Inbar Shteinberg.;Liat Stoler-Barak.;Ziv Shulman.;Ranit Kedmi.
来源: Nature. 2025年
To absorb nutrients and support commensal microbes, the host induces tolerogenic immune responses via peripheral regulatory T cells (pTregs) 1,2. Prior studies identified type 1 dendritic cells (cDC1) as initiators of dietary pTregs3. However, we now report that food-specific pTreg cells are exclusively induced by the recently identified RORγt APCs4-8 and not by cDCs. Instead, our data suggest that pTreg-cDC1 interactions in steady-state limit the expansion of food-specific CD8αβ T cells. This regulation breaks during infection or food poisoning, enabling dietary CD8αβ T cells to expand and acquire effector functions in response to mimicked food antigens. Unlike in typical infections, after the pathogen is cleared, dietary CD8αβ T cells do not expand in response to their corresponding dietary antigens. Thus, we propose that in response to dietary antigens, tolerance is mediated by a circuit of dedicated antigen-presenting cells (APCs) and T cells. When the host is challenged by infection, this circuit permits the transient expansion of protective effector responses without compromising the overall strategy of tolerance that ensures safe food consumption.
77. Scaling and logic in the color code on a superconducting quantum processor.
作者: N Lacroix.;A Bourassa.;F J H Heras.;L M Zhang.;J Bausch.;A W Senior.;T Edlich.;N Shutty.;V Sivak.;A Bengtsson.;M McEwen.;O Higgott.;D Kafri.;J Claes.;A Morvan.;Z Chen.;A Zalcman.;S Madhuk.;R Acharya.;L Aghababaie Beni.;G Aigeldinger.;R Alcaraz.;T I Andersen.;M Ansmann.;F Arute.;K Arya.;A Asfaw.;J Atalaya.;R Babbush.;B Ballard.;J C Bardin.;A Bilmes.;S Blackwell.;J Bovaird.;D Bowers.;L Brill.;M Broughton.;D A Browne.;B Buchea.;B B Buckley.;T Burger.;B Burkett.;N Bushnell.;A Cabrera.;J Campero.;H-S Chang.;B Chiaro.;L-Y Chih.;A Y Cleland.;J Cogan.;R Collins.;P Conner.;W Courtney.;A L Crook.;B Curtin.;S Das.;S Demura.;L De Lorenzo.;A Di Paolo.;P Donohoe.;I Drozdov.;A Dunsworth.;A Eickbusch.;A Moshe Elbag.;M Elzouka.;C Erickson.;V S Ferreira.;L Flores Burgos.;E Forati.;A G Fowler.;B Foxen.;S Ganjam.;G Garcia.;R Gasca.;É Genois.;W Giang.;D Gilboa.;R Gosula.;A Grajales Dau.;D Graumann.;A Greene.;J A Gross.;T Ha.;S Habegger.;M Hansen.;M P Harrigan.;S D Harrington.;S Heslin.;P Heu.;R Hiltermann.;J Hilton.;S Hong.;H-Y Huang.;A Huff.;W J Huggins.;E Jeffrey.;Z Jiang.;X Jin.;C Joshi.;P Juhas.;A Kabel.;H Kang.;A H Karamlou.;K Kechedzhi.;T Khaire.;T Khattar.;M Khezri.;S Kim.;P V Klimov.;B Kobrin.;A N Korotkov.;F Kostritsa.;J Mark Kreikebaum.;V D Kurilovich.;D Landhuis.;T Lange-Dei.;B W Langley.;P Laptev.;K-M Lau.;J Ledford.;K Lee.;B J Lester.;L Le Guevel.;W Yan Li.;Y Li.;A T Lill.;W P Livingston.;A Locharla.;E Lucero.;D Lundahl.;A Lunt.;A Maloney.;S Mandrà.;L S Martin.;O Martin.;C Maxfield.;J R McClean.;S Meeks.;A Megrant.;K C Miao.;R Molavi.;S Molina.;S Montazeri.;R Movassagh.;C Neill.;M Newman.;A Nguyen.;M Nguyen.;C-H Ni.;M Y Niu.;L Oas.;W D Oliver.;R Orosco.;K Ottosson.;A Pizzuto.;R Potter.;O Pritchard.;C Quintana.;G Ramachandran.;M J Reagor.;R Resnick.;D M Rhodes.;G Roberts.;E Rosenberg.;E Rosenfeld.;E Rossi.;P Roushan.;K Sankaragomathi.;H F Schurkus.;M J Shearn.;A Shorter.;V Shvarts.;S Small.;W Clarke Smith.;S Springer.;G Sterling.;J Suchard.;A Szasz.;A Sztein.;D Thor.;E Tomita.;A Torres.;M Mert Torunbalci.;A Vaishnav.;J Vargas.;S Vdovichev.;G Vidal.;C Vollgraff Heidweiller.;S Waltman.;J Waltz.;S X Wang.;B Ware.;T Weidel.;T White.;K Wong.;B W K Woo.;M Woodson.;C Xing.;Z Jamie Yao.;P Yeh.;B Ying.;J Yoo.;N Yosri.;G Young.;Y Zhang.;N Zhu.;N Zobrist.;H Neven.;P Kohli.;A Davies.;S Boixo.;J Kelly.;C Jones.;C Gidney.;K J Satzinger.
来源: Nature. 2025年
Quantum error correction [1-4] is essential for bridging the gap between the error rates of physical devices and the extremely low error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors [5-8] have focused primarily on the surface code [9], which offers a high error threshold but poses limitations for logical operations. The color code [10] enables more efficient logic, but it requires more complex stabilizer measurements and decoding. Measuring these stabilizers in planar architectures like superconducting qubits is challenging, and realizations of color codes [11-19] have not addressed performance scaling with code size on any platform. Here, we present a comprehensive demonstration of the color code on a superconducting processor [8]. Scaling the code distance from three to five suppresses logical errors by a factor of Λ3/5 = 1.56(4). Simulations indicate this performance is below the threshold of the color code, and the color code may become more efficient than the surface code following modest device improvements. We test transversal Clifford gates with logical randomized benchmarking [20] and inject magic states [21], a key resource for universal computation, achieving fidelities exceeding 99 % with post-selection. Finally, we teleport logical states between color codes using lattice surgery [22]. This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.
78. Author Correction: Chromosome end protection by RAP1-mediated inhibition of DNA-PK.
作者: Patrik Eickhoff.;Ceylan Sonmez.;Charlotte E L Fisher.;Oviya Inian.;Theodoros I Roumeliotis.;Angela Dello Stritto.;Jörg Mansfeld.;Jyoti S Choudhary.;Sebastian Guettler.;Francisca Lottersberger.;Max E Douglas.
来源: Nature. 2025年 |