2601. A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice.
作者: Ronald G Gill.;Philippe P Pagni.;Tinalyn Kupfer.;Clive H Wasserfall.;Songyan Deng.;Amanda Posgai.;Yulia Manenkova.;Amira Bel Hani.;Laura Straub.;Philip Bernstein.;Mark A Atkinson.;Kevan C Herold.;Matthias von Herrath.;Teodora Staeva.;Mario R Ehlers.;Gerald T Nepom.
来源: Diabetes. 2016年65卷5期1310-6页
There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti-IL-1β monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use.
2602. Discovery of a Selective Islet Peptidome Presented by the Highest-Risk HLA-DQ8trans Molecule.
作者: Menno van Lummel.;Peter A van Veelen.;Arnoud H de Ru.;Jos Pool.;Tatjana Nikolic.;Sandra Laban.;Antoinette Joosten.;Jan W Drijfhout.;Iria Gómez-Touriño.;Sefina Arif.;Henk J Aanstoot.;Mark Peakman.;Bart O Roep.
来源: Diabetes. 2016年65卷3期732-41页
HLA-DQ2/8 heterozygous individuals are at far greater risk for type 1 diabetes (T1D) development by expressing HLA-DQ8trans on antigen-presenting cells compared with HLA-DQ2 or -DQ8 homozygous individuals. Dendritic cells (DC) initiate and shape adaptive immune responses by presenting HLA-epitope complexes to naïve T cells. To dissect the role of HLA-DQ8trans in presenting natural islet epitopes, we analyzed the islet peptidome of HLA-DQ2, -DQ8, and -DQ2/8 by pulsing DC with preproinsulin (PPI), IA-2, and GAD65. Quality and quantity of islet epitopes presented by HLA-DQ2/8 differed from -DQ2 or -DQ8. We identified two PPI epitopes solely processed and presented by HLA-DQ2/8 DC: an HLA-DQ8trans-binding signal-sequence epitope previously identified as CD8 T-cell epitope and a second epitope that we previously identified as CD4 T-cell epitope with increased binding to HLA-DQ8trans upon posttranslational modification. IA-2 epitopes retrieved from HLA-DQ2/8 and -DQ8 DC bound to HLA-DQ8cis/trans. No GAD65 epitopes were eluted from HLA-DQ. T-cell responses were detected against the novel islet epitopes in blood from patients with T1D but scantly detected in healthy donor subjects. We report the first PPI and IA-2 natural epitopes presented by highest-risk HLA-DQ8trans. The selective processing and presentation of HLA-DQ8trans-binding islet epitopes provides insight in the mechanism of excessive genetic risk imposed by HLA-DQ2/8 heterozygosity and may assist immune monitoring of disease progression and therapeutic intervention as well as provide therapeutic targets for immunotherapy in subjects at risk for T1D.
2603. miR-200b Mediates Endothelial-to-Mesenchymal Transition in Diabetic Cardiomyopathy.
作者: Biao Feng.;Yanan Cao.;Shali Chen.;Xuran Chu.;Yanhui Chu.;Subrata Chakrabarti.
来源: Diabetes. 2016年65卷3期768-79页
Hyperglycemia-induced endothelial injury is a key pathogenetic factor in diabetic cardiomyopathy. Endothelial injury may lead to a phenotypic change (i.e., endothelial-to-mesenchymal transition [EndMT]), causing cardiac fibrosis. Epigenetic mechanisms, through specific microRNA, may regulate such a process. We investigated the mechanisms for such changes in cardiac microvascular endothelial cells and in the heart of genetically engineered mice with chemically induced diabetes. Cardiac tissues and isolated mouse heart endothelial cells (MHECs) from animals with or without endothelial-specific overexpression of miR-200b, with or without streptozotocin-induced diabetes, were examined at the mRNA and protein levels for endothelial and mesenchymal markers. Expression of miR-200b and its targets was quantified. Cardiac functions and structures were analyzed. In the hearts of wild-type diabetic mice, EndMT was observed, which was prevented in the miR-200b transgenic diabetic mice. Expression of specific markers such as vascular endothelial growth factor, zinc finger E-box-binding homeobox, transforming growth factor-β1, and p300 were increased in the hearts of diabetic mice and were prevented following miR-200b overexpression. MHECs showed similar changes. miR-200b overexpression also prevented diabetes-induced cardiac functional and structural changes. These data indicate that glucose-induced EndMT in vivo and in vitro in the hearts of diabetic mice is possibly mediated by miR-200b and p300.
2604. A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents.
作者: Romy Kursawe.;Vishwa D Dixit.;Philipp E Scherer.;Nicola Santoro.;Deepak Narayan.;Ruth Gordillo.;Cosimo Giannini.;Ximena Lopez.;Bridget Pierpont.;Jessica Nouws.;Gerald I Shulman.;Sonia Caprio.
来源: Diabetes. 2016年65卷3期610-8页
The innate immune cell sensor leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome controls the activation of caspase-1, and the release of proinflammatory cytokines interleukin (IL)-1β and IL-18. The NLRP3 inflammasome is implicated in adipose tissue inflammation and the pathogenesis of insulin resistance. Herein, we tested the hypothesis that adipose tissue inflammation and NLRP3 inflammasome are linked to the downregulation of subcutaneous adipose tissue (SAT) adipogenesis/lipogenesis in obese adolescents with altered abdominal fat partitioning. We performed abdominal SAT biopsies on 58 obese adolescents and grouped them by MRI-derived visceral fat to visceral adipose tissue (VAT) plus SAT (VAT/VAT+SAT) ratio (cutoff 0.11). Adolescents with a high VAT/VAT+SAT ratio showed higher SAT macrophage infiltration and higher expression of the NLRP3 inflammasome-related genes (i.e., TLR4, NLRP3, IL1B, and CASP1). The increase in inflammation markers was paralleled by a decrease in genes related to insulin sensitivity (ADIPOQ, GLUT4, PPARG2, and SIRT1) and lipogenesis (SREBP1c, ACC, LPL, and FASN). Furthermore, SAT ceramide concentrations correlated with the expression of CASP1 and IL1B. Infiltration of macrophages and upregulation of the NLRP3 inflammasome together with the associated high ceramide content in the plasma and SAT of obese adolescents with a high VAT/VAT+SAT may contribute to the limited expansion of the subcutaneous abdominal adipose depot and the development of insulin resistance.
2605. Erratum. Increased Immune Cell Infiltration of the Exocrine Pancreas: A Possible Contribution to the Pathogenesis of Type 1 Diabetes. Diabetes 2014;63:3880-3890.
作者: Teresa Rodriguez-Calvo.;Olov Ekwall.;Natalie Amirian.;Jose Zapardiel-Gonzalo.;Matthias G von Herrath.
来源: Diabetes. 2016年65卷1期303页 2606. The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity.
作者: James Dooley.;Josselyn E Garcia-Perez.;Jayasree Sreenivasan.;Susan M Schlenner.;Roman Vangoitsenhoven.;Aikaterini S Papadopoulou.;Lei Tian.;Susann Schonefeldt.;Lutgarde Serneels.;Christophe Deroose.;Kim A Staats.;Bart Van der Schueren.;Bart De Strooper.;Owen P McGuinness.;Chantal Mathieu.;Adrian Liston.
来源: Diabetes. 2016年65卷1期53-61页
The microRNA-29 (miR-29) family is among the most abundantly expressed microRNA in the pancreas and liver. Here, we investigated the function of miR-29 in glucose regulation using miR-29a/b-1 (miR-29a)-deficient mice and newly generated miR-29b-2/c (miR-29c)-deficient mice. We observed multiple independent functions of the miR-29 family, which can be segregated into a hierarchical physiologic regulation of glucose handling. miR-29a, and not miR-29c, was observed to be a positive regulator of insulin secretion in vivo, with dysregulation of the exocytotic machinery sensitizing β-cells to overt diabetes after unfolded protein stress. By contrast, in the liver both miR-29a and miR-29c were important negative regulators of insulin signaling via phosphatidylinositol 3-kinase regulation. Global or hepatic insufficiency of miR-29 potently inhibited obesity and prevented the onset of diet-induced insulin resistance. These results demonstrate strong regulatory functions for the miR-29 family in obesity and diabetes, culminating in a hierarchical and dose-dependent effect on premature lethality.
2607. Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium.
The International Knockout Mouse Consortium (IKMC) introduces its targeted constructs into C57BL/6N embryonic stem cells. However, breeding with a Cre-recombinase and/or Flp-recombinase mouse is required for the generation of a null allele with the IKMC cassette. Many recombinase strains are in the C57BL/6J background, resulting in knockout animals on a mixed strain background. This can lead to variability in metabolic data and the use of improper control groups. While C57BL/6N and C57BL/6J are derived from the same parental C57BL/6 strain, there are key genotypic and phenotypic differences between these substrains. Many researchers may not even be aware of these differences, as the shorthand C57BL/6 is often used to describe both substrains. We found that 58% of articles involving genetically modified mouse models did not completely address background strain. This review will describe these two substrains and highlight the importance of separate consideration in mouse model development. Our aim is to increase awareness of this issue in the diabetes research community and to provide practical strategies to enable researchers to avoid mixed strain animals when using IKMC knockout mice.
2612. Hypomagnesemia in Type 2 Diabetes: A Vicious Circle?
作者: Lisanne M M Gommers.;Joost G J Hoenderop.;René J M Bindels.;Jeroen H F de Baaij.
来源: Diabetes. 2016年65卷1期3-13页
Over the past decades, hypomagnesemia (serum Mg(2+) <0.7 mmol/L) has been strongly associated with type 2 diabetes mellitus (T2DM). Patients with hypomagnesemia show a more rapid disease progression and have an increased risk for diabetes complications. Clinical studies demonstrate that T2DM patients with hypomagnesemia have reduced pancreatic β-cell activity and are more insulin resistant. Moreover, dietary Mg(2+) supplementation for patients with T2DM improves glucose metabolism and insulin sensitivity. Intracellular Mg(2+) regulates glucokinase, KATP channels, and L-type Ca(2+) channels in pancreatic β-cells, preceding insulin secretion. Moreover, insulin receptor autophosphorylation is dependent on intracellular Mg(2+) concentrations, making Mg(2+) a direct factor in the development of insulin resistance. Conversely, insulin is an important regulator of Mg(2+) homeostasis. In the kidney, insulin activates the renal Mg(2+) channel transient receptor potential melastatin type 6 that determines the final urinary Mg(2+) excretion. Consequently, patients with T2DM and hypomagnesemia enter a vicious circle in which hypomagnesemia causes insulin resistance and insulin resistance reduces serum Mg(2+) concentrations. This Perspective provides a systematic overview of the molecular mechanisms underlying the effects of Mg(2+) on insulin secretion and insulin signaling. In addition to providing a review of current knowledge, we provide novel directions for future research and identify previously neglected contributors to hypomagnesemia in T2DM.
2613. Inhibition of Dipeptidyl Peptidase-4 Impairs Ventricular Function and Promotes Cardiac Fibrosis in High Fat-Fed Diabetic Mice.
作者: Erin E Mulvihill.;Elodie M Varin.;John R Ussher.;Jonathan E Campbell.;K W Annie Bang.;Tahmid Abdullah.;Laurie L Baggio.;Daniel J Drucker.
来源: Diabetes. 2016年65卷3期742-54页
Dipeptidyl peptidase-4 (DPP4) inhibitors used for the treatment of type 2 diabetes are cardioprotective in preclinical studies; however, some cardiovascular outcome studies revealed increased hospitalization rates for heart failure (HF) among a subset of DPP4 inhibitor-treated subjects with diabetes. We evaluated cardiovascular function in young euglycemic Dpp4(-/-) mice and in older, high fat-fed, diabetic C57BL/6J mice treated with either the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide or the highly selective DPP4 inhibitor MK-0626. We assessed glucose metabolism, ventricular function and remodeling, and cardiac gene expression profiles linked to inflammation and fibrosis after transverse aortic constriction (TAC) surgery, a pressure-volume overload model of HF. Young euglycemic Dpp4(-/-) mice exhibited a cardioprotective response after TAC surgery or doxorubicin administration, with reduced fibrosis; however, cardiac mRNA analysis revealed increased expression of inflammation-related transcripts. Older, diabetic, high fat-fed mice treated with the GLP-1R agonist liraglutide exhibited preservation of cardiac function. In contrast, diabetic mice treated with MK-0626 exhibited modest cardiac hypertrophy, impairment of cardiac function, and dysregulated expression of genes and proteins controlling inflammation and cardiac fibrosis. These findings provide a model for the analysis of mechanisms linking fibrosis, inflammation, and impaired ventricular function to DPP4 inhibition in preclinical studies.
2614. Evidence of Extrapancreatic Glucagon Secretion in Man.
作者: Asger Lund.;Jonatan I Bagger.;Nicolai J Wewer Albrechtsen.;Mikkel Christensen.;Magnus Grøndahl.;Bolette Hartmann.;Elisabeth R Mathiesen.;Carsten P Hansen.;Jan H Storkholm.;Gerrit van Hall.;Jens F Rehfeld.;Daniel Hornburg.;Felix Meissner.;Matthias Mann.;Steen Larsen.;Jens J Holst.;Tina Vilsbøll.;Filip K Knop.
来源: Diabetes. 2016年65卷3期585-97页
Glucagon is believed to be a pancreas-specific hormone, and hyperglucagonemia has been shown to contribute significantly to the hyperglycemic state of patients with diabetes. This hyperglucagonemia has been thought to arise from α-cell insensitivity to suppressive effects of glucose and insulin combined with reduced insulin secretion. We hypothesized that postabsorptive hyperglucagonemia represents a gut-dependent phenomenon and subjected 10 totally pancreatectomized patients and 10 healthy control subjects to a 75-g oral glucose tolerance test and a corresponding isoglycemic intravenous glucose infusion. We applied novel analytical methods of plasma glucagon (sandwich ELISA and mass spectrometry-based proteomics) and show that 29-amino acid glucagon circulates in patients without a pancreas and that glucose stimulation of the gastrointestinal tract elicits significant hyperglucagonemia in these patients. These findings emphasize the existence of extrapancreatic glucagon (perhaps originating from the gut) in man and suggest that it may play a role in diabetes secondary to total pancreatectomy.
2615. Monitoring C-Peptide Storage and Secretion in Islet β-Cells In Vitro and In Vivo.
作者: Shuaishuai Zhu.;Dennis Larkin.;Shusheng Lu.;Candice Inouye.;Leena Haataja.;Arfah Anjum.;Robert Kennedy.;David Castle.;Peter Arvan.
来源: Diabetes. 2016年65卷3期699-709页
Human proinsulin with C-peptide-bearing Superfolder Green Fluorescent Protein (CpepSfGFP) has been expressed in transgenic mice, driven by the Ins1 promoter. The protein, expressed exclusively in β-cells, is processed and stored as CpepSfGFP and human insulin comprising only ∼0.04% of total islet proinsulin plus insulin, exerting no metabolic impact. The kinetics of the release of insulin and CpepSfGFP from isolated islets appear identical. Upon a single acute stimulatory challenge in vitro, fractional release of insulin does not detectably deplete islet fluorescence. In vivo, fluorescence imaging of the pancreatic surface allows, for the first time, visual assessment of pancreatic islet insulin content, and we demonstrate that CpepSfGFP visibly declines upon diabetes progression in live lepR(db/db) mice. In anesthetized mice, after intragastric or intravenous saline delivery, pancreatic CpepSfGFP (insulin) content remains undiminished. Remarkably, however, within 20 min after acute intragastric or intravenous glucose delivery (with blood glucose concentrations reaching >15 mmol/L), a small subset of islets shows rapid dispossession of a major fraction of their stored CpepSfGFP (insulin) content, whereas most islets exhibit no demonstrable loss of CpepSfGFP (insulin). These studies strongly suggest that there are "first responder" islets to an in vivo glycemic challenge, which cannot be replicated by islets in vitro.
2616. Restoration of Nrf2 Signaling Normalizes the Regenerative Niche.
作者: Marc A Soares.;Oriana D Cohen.;Yee Cheng Low.;Rita A Sartor.;Trevor Ellison.;Utkarsh Anil.;Lavinia Anzai.;Jessica B Chang.;Pierre B Saadeh.;Piul S Rabbani.;Daniel J Ceradini.
来源: Diabetes. 2016年65卷3期633-46页
Chronic hyperglycemia impairs intracellular redox homeostasis and contributes to impaired diabetic tissue regeneration. The Keap1/Nrf2 pathway is a critical regulator of the endogenous antioxidant response system, and its dysfunction has been implicated in numerous pathologies. Here we characterize the effect of chronic hyperglycemia on Nrf2 signaling within a diabetic cutaneous regeneration model. We characterized the effects of chronic hyperglycemia on the Keap1/Nrf2 pathway within models of diabetic cutaneous wound regeneration. We assessed reactive oxygen species (ROS) production and antioxidant gene expression following alterations in the Nrf2 suppressor Keap1 and the subsequent changes in Nrf2 signaling. We also developed a topical small interfering RNA (siRNA)-based therapy to restore redox homeostasis within diabetic wounds. Western blotting demonstrated that chronic hyperglycemia-associated oxidative stress inhibits nuclear translocation of Nrf2 and impairs activation of antioxidant genes, thus contributing to ROS accumulation. Keap1 inhibition increased Nrf2 nuclear translocation, increased antioxidant gene expression, and reduced ROS production to normoglycemic levels, both in vitro and in vivo. Topical siKeap1 therapy resulted in improved regenerative capacity of diabetic wounds and accelerated closure. We report that chronic hyperglycemia weakens the endogenous antioxidant response, and the consequences of this defect are manifested by intracellular redox dysregulation, which can be restored by Keap1 inhibition. Targeted siRNA-based therapy represents a novel, efficacious strategy to reestablish redox homeostasis and accelerate diabetic cutaneous tissue regeneration.
2617. Targeted Deep Sequencing in Multiple-Affected Sibships of European Ancestry Identifies Rare Deleterious Variants in PTPN22 That Confer Risk for Type 1 Diabetes.
作者: Yan Ge.;Suna Onengut-Gumuscu.;Aaron R Quinlan.;Aaron J Mackey.;Jocyndra A Wright.;Jane H Buckner.;Tania Habib.;Stephen S Rich.;Patrick Concannon.
来源: Diabetes. 2016年65卷3期794-802页
Despite finding more than 40 risk loci for type 1 diabetes (T1D), the causative variants and genes remain largely unknown. Here, we sought to identify rare deleterious variants of moderate-to-large effects contributing to T1D. We deeply sequenced 301 protein-coding genes located in 49 previously reported T1D risk loci in 70 T1D cases of European ancestry. These cases were selected from putatively high-risk families that had three or more siblings diagnosed with T1D at early ages. A cluster of rare deleterious variants in PTPN22 was identified, including two novel frameshift mutations (ss538819444 and rs371865329) and two missense variants (rs74163663 and rs56048322). Genotyping in 3,609 T1D families showed that rs56048322 was significantly associated with T1D and that this association was independent of the T1D-associated common variant rs2476601. The risk allele at rs56048322 affects splicing of PTPN22, resulting in the production of two alternative PTPN22 transcripts and a novel isoform of LYP (the protein encoded by PTPN22). This isoform competes with the wild-type LYP for binding to CSK and results in hyporesponsiveness of CD4(+) T cells to antigen stimulation in T1D subjects. These findings demonstrate that in addition to common variants, rare deleterious variants in PTPN22 exist and can affect T1D risk.
2618. Lack of Prox1 Downregulation Disrupts the Expansion and Maturation of Postnatal Murine β-Cells.
作者: Leena Paul.;Emily M Walker.;Yiannis Drosos.;Holly A Cyphert.;Geoffrey Neale.;Roland Stein.;Jack South.;Gerard Grosveld.;Pedro L Herrera.;Beatriz Sosa-Pineda.
来源: Diabetes. 2016年65卷3期687-98页
Transcription factor expression fluctuates during β-cell ontogeny, and disruptions in this pattern can affect the development or function of those cells. Here we uncovered that murine endocrine pancreatic progenitors express high levels of the homeodomain transcription factor Prox1, whereas both immature and mature β-cells scarcely express this protein. We also investigated if sustained Prox1 expression is incompatible with β-cell development or maintenance using transgenic mouse approaches. We discovered that Prox1 upregulation in mature β-cells has no functional consequences; in contrast, Prox1 overexpression in immature β-cells promotes acute fasting hyperglycemia. Using a combination of immunostaining and quantitative and comparative gene expression analyses, we determined that Prox1 upregulation reduces proliferation, impairs maturation, and enables apoptosis in postnatal β-cells. Also, we uncovered substantial deficiency in β-cells that overexpress Prox1 of the key regulator of β-cell maturation MafA, several MafA downstream targets required for glucose-stimulated insulin secretion, and genes encoding important components of FGF signaling. Moreover, knocking down PROX1 in human EndoC-βH1 β-cells caused increased expression of many of these same gene products. These and other results in our study indicate that reducing the expression of Prox1 is beneficial for the expansion and maturation of postnatal β-cells.
2619. Apelin Controls Fetal and Neonatal Glucose Homeostasis and Is Altered by Maternal Undernutrition.
作者: Sylvain Mayeur.;Jean-Sébastien Wattez.;Marie-Amélie Lukaszewski.;Simon Lecoutre.;Laura Butruille.;Anne Drougard.;Delphine Eberlé.;Bruno Bastide.;Christine Laborie.;Laurent Storme.;Claude Knauf.;Didier Vieau.;Christophe Breton.;Jean Lesage.
来源: Diabetes. 2016年65卷3期554-60页
The adequate control of glucose homeostasis during both gestation and early postnatal life is crucial for the development of the fetoplacental unit and adaptive physiological responses at birth. Growing evidences indicate that apelin and its receptor, APJ, which are expressed across a wide range of tissues, exert important roles in glucose homeostasis in adults. However, little is known about the function of the apelinergic system during gestation. In this study, we evaluated the activity of this system in rats, the role of apelin in fetal and neonatal glucose homeostasis, and its modulation by maternal food restriction. We found that 1) the apelinergic system was expressed at the fetoplacental interface and in numerous fetal tissues, 2) ex vivo, the placenta released high amounts of apelin in late gestation, 3) intravenous apelin injection in mothers increased the transplacental transport of glucose, and 4) intraperitoneal apelin administration in neonates increased glucose uptake in lung and muscle. Maternal food restriction drastically reduced apelinemia in both mothers and growth-restricted fetuses and altered the expression of the apelinergic system at the fetoplacental interface. Together, our data demonstrate that apelin controls fetal and neonatal glucose homeostasis and is altered by fetal growth restriction induced by maternal undernutrition.
2620. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring.
作者: Michael Kruse.;Farnaz Keyhani-Nejad.;Frank Isken.;Barbara Nitz.;Anja Kretschmer.;Eva Reischl.;Tonia de las Heras Gala.;Martin A Osterhoff.;Harald Grallert.;Andreas F H Pfeiffer.
来源: Diabetes. 2016年65卷3期574-84页
Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming.
|