当前位置: 首页 >> 检索结果
共有 34602 条符合本次的查询结果, 用时 2.4809806 秒

201. DeepMind unveils 'spectacular' general-purpose science AI.

作者: Elizabeth Gibney.
来源: Nature. 2025年641卷8064期827-828页

202. Mice grow bigger brains when given this stretch of human DNA.

作者: Gemma Conroy.
来源: Nature. 2025年

203. How to transport antimatter - stick it on the back of a van.

作者: Benjamin Thompson.;Shamini Bundell.
来源: Nature. 2025年

204. 'I don't have the bandwidth': how to juggle dating alongside a PhD.

作者: Gemma Conroy.
来源: Nature. 2025年642卷8066期261-262页

205. Fossil claw marks show reptiles arose much earlier than thought.

作者: Rita Aksenfeld.
来源: Nature. 2025年641卷8064期832-833页

206. Take Nature's AI research test: find out how your ethics compare.

作者: Richard Van Noorden.;Diana Kwon.
来源: Nature. 2025年

208. Genomes from a four-generation family reveal the rate of new mutations.

来源: Nature. 2025年

209. Marsupial embryos lack the epigenetic reset seen in placental mammals.

来源: Nature. 2025年

210. Immune control of metastatic cancer at the edge of the central nervous system.

来源: Nature. 2025年

211. Black hole flings out clumps of gas.

作者: Manuela Bischetti.
来源: Nature. 2025年641卷8065期1104-1105页

212. Track record: unexpectedly early reptile claw prints found.

作者: Stuart S Sumida.
来源: Nature. 2025年641卷8065期1103-1104页

213. Do look up: how science and international cooperation closed the ozone hole.

来源: Nature. 2025年641卷8063期559-560页

214. Is it OK for AI to write science papers? Nature survey shows researchers are split.

作者: Diana Kwon.
来源: Nature. 2025年641卷8063期574-578页

215. Black hole fly-by modelled with landmark precision.

作者: Zhengwen Liu.
来源: Nature. 2025年641卷8063期598-599页

216. Earth's climatic past illuminates future South Asian monsoon patterns.

作者: Francesco S R Pausata.;Thejna Tharammal.
来源: Nature. 2025年641卷8063期595-596页

217. Brain tissues, assemble! Inside the push to build better brain models.

作者: Elie Dolgin.
来源: Nature. 2025年641卷8063期809-812页

218. Past warm intervals inform the future South Asian summer monsoon.

作者: Linqiang He.;Tianjun Zhou.;Zhun Guo.
来源: Nature. 2025年641卷8063期653-659页
In the future, monsoon rainfall over densely populated South Asia is expected to increase, even as monsoon circulation weakens1-3. By contrast, past warm intervals were marked by both increased rainfall and a strengthening of monsoon circulation4-6, posing a challenge to understanding the response of the South Asian summer monsoon to warming. Here we show consistent South Asian summer monsoon changes in the mid-Pliocene, Last Interglacial, mid-Holocene and future scenarios, characterized by an overall increase in monsoon rainfall, a weakening of the monsoon trough-like circulation over the Bay of Bengal and a strengthening of the monsoon circulation over the northern Arabian Sea, as revealed by a compilation of proxy records and climate simulations. Increased monsoon rainfall is thermodynamically dominated by atmospheric moisture following the rich-get-richer paradigm, and dynamically dominated by the monsoon circulation driven by the enhanced land warming in subtropical western Eurasia and northern Africa. The coherent response of monsoon dynamics across warm climates reconciles past strengthening with future weakening, reinforcing confidence in future projections. Further prediction of South Asian summer monsoon circulation and rainfall by physics-based regression models using past information agrees well with climate model projections, with spatial correlation coefficients of approximately 0.8 and 0.7 under the high-emissions scenario. These findings underscore the promising potential of past analogues, bolstered by palaeoclimate reconstruction, in improving future South Asian summer monsoon projections.

219. Quantum error correction of qudits beyond break-even.

作者: Benjamin L Brock.;Shraddha Singh.;Alec Eickbusch.;Volodymyr V Sivak.;Andy Z Ding.;Luigi Frunzio.;Steven M Girvin.;Michel H Devoret.
来源: Nature. 2025年641卷8063期612-618页
Hilbert space dimension is a key resource for quantum information processing1,2. Not only is a large overall Hilbert space an essential requirement for quantum error correction, but a large local Hilbert space can also be advantageous for realizing gates and algorithms more efficiently3-7. As a result, there has been considerable experimental effort in recent years to develop quantum computing platforms using qudits (d-dimensional quantum systems with d > 2) as the fundamental unit of quantum information8-19. Just as with qubits, quantum error correction of these qudits will be necessary in the long run, but so far, error correction of logical qudits has not been demonstrated experimentally. Here we report the experimental realization of an error-corrected logical qutrit (d = 3) and ququart (d = 4), which was achieved with the Gottesman-Kitaev-Preskill bosonic code20. Using a reinforcement learning agent21,22, we optimized the Gottesman-Kitaev-Preskill qutrit (ququart) as a ternary (quaternary) quantum memory and achieved beyond break-even error correction with a gain of 1.82 ± 0.03 (1.87 ± 0.03). This work represents a novel way of leveraging the large Hilbert space of a harmonic oscillator to realize hardware-efficient quantum error correction.

220. Emergence of Calabi-Yau manifolds in high-precision black-hole scattering.

作者: Mathias Driesse.;Gustav Uhre Jakobsen.;Albrecht Klemm.;Gustav Mogull.;Christoph Nega.;Jan Plefka.;Benjamin Sauer.;Johann Usovitsch.
来源: Nature. 2025年641卷8063期603-607页
When two massive objects (black holes, neutron stars or stars) in our universe fly past each other, their gravitational interactions deflect their trajectories1,2. The gravitational waves emitted in the related bound-orbit system-the binary inspiral-are now routinely detected by gravitational-wave observatories3. Theoretical physics needs to provide high-precision templates to make use of unprecedented sensitivity and precision of the data from upcoming gravitational-wave observatories4. Motivated by this challenge, several analytical and numerical techniques have been developed to approximately solve this gravitational two-body problem. Although numerical relativity is accurate5-7, it is too time-consuming to rapidly produce large numbers of gravitational-wave templates. For this, approximate analytical results are also required8-15. Here we report on a new, highest-precision analytical result for the scattering angle, radiated energy and recoil of a black hole or neutron star scattering encounter at the fifth order in Newton's gravitational coupling G, assuming a hierarchy in the two masses. This is achieved by modifying state-of-the-art techniques for the scattering of elementary particles in colliders to this classical physics problem in our universe. Our results show that mathematical functions related to Calabi-Yau (CY) manifolds, 2n-dimensional generalizations of tori, appear in the solution to the radiated energy in these scatterings. We anticipate that our analytical results will allow the development of a new generation of gravitational-wave models, for which the transition to the bound-state problem through analytic continuation and strong-field resummation will need to be performed.
共有 34602 条符合本次的查询结果, 用时 2.4809806 秒